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ABSTRACT 

 

Existing engineering structures are continuously deteriorating and their lifetimes are 

limited. In order to help ensure the structural safety and extend the service life of 

existing deteriorating structures, significant research efforts for establishing 

cost-effective maintenance strategies have been made. A life-cycle analysis usually 

depends on structural assessment and prediction models under uncertainty. The 

accuracy associated with these models can be considerably improved if the data from 

structural health monitoring (SHM) are used efficiently. Therefore, integration of 

SHM into maintenance management has recently been considered as a significant tool 

for rational maintenance planning.  

Improved accuracy of structural performance assessment and prediction by SHM 

can lead to timely and appropriate maintenance interventions, resulting in reduction of 

both expected failure cost and expected maintenance cost of deteriorating structural 

systems. In order to maximize this potential benefit of SHM, information from 

monitoring has to be used appropriately, and an effective optimum monitoring 

planning is necessary. Furthermore, lifetime optimization of inspection, monitoring, 

and maintenance strategies needs to be investigated in a life-cycle management 

framework. 

The main focus of this study is the development of a rational probabilistic 

integrated framework for optimum inspection, monitoring and maintenance planning. 
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Based on concepts of probability and reliability, novel approaches to assess and 

predict the structural performance using SHM data are developed and applied to 

existing highway bridges. For optimum inspection and monitoring planning under 

uncertainty, several probabilistic approaches are developed in this study. Optimization 

formulations for these approaches are based on the concepts of availability, damage 

detection delay, and time-based safety margin. The inspection or monitoring plan is a 

solution of a multi-objective optimization problem under uncertainty. The 

uncertainties associated with damage occurrence and propagation, and quality of 

inspection method are considered within the optimization problem. These approaches 

are applied to deteriorating structures (i.e., highway bridges, naval ships) under 

various deterioration mechanisms (i.e., corrosion, fatigue). Furthermore, considering 

the effects of probabilities of damage detection and repair on future structural 

performance, the optimum inspection and maintenance strategy under uncertainty are 

addressed to extend the lifetime of deteriorating structures.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview of Life-Cycle Analysis 

The performance of a structure over its service life undergoes gradual deterioration 

due to various environmental stressors [Frangopol and Liu 2006]. In order to ensure 

the structural safety during the service life of a structure, maintenance and risk 

mitigation are required [Frangopol et al. 2001]. Limited financial resources should be 

allocated in a rational way so that lifetime structural performance can be improved, 

and the service life of a structure can be extended [Das 1999]. This requires reliable 

modeling of loadings, accurate prediction of structural performance, proper estimation 

of management and maintenance cost over time, and generation of well-balanced 

solutions [Frangopol and Liu 2006, Schuëller 1998]. Since time-dependent structural 

deterioration processes under continuously changing environmental conditions are 

highly uncertain, reliability-based approaches for life-cycle analysis are necessary 

[Estes et al. 1999, Kong and Frangopol 2003b, and 2005].  

 

1.1.1 Reliability-Based Life-Cycle Analysis 

Life-cycle analysis can be referred to a systemic method to evaluate the effects of 

time-dependent deterioration processes, loading conditions, maintenance and repair 

actions on the performance of structures and their service lives [Moan 2005, 
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Frangopol and Liu 2006]. Generally, the evaluation of these effects includes high 

uncertainties [Frangopol 2011]. In order to treat uncertainties rationally, 

reliability-based approaches for life-cycle analysis were introduced and investigated 

by Frangopol et al. (1997a and 1997b), Estes and Frangopol (1999), Kong and 

Frangopol (2003 and 2005), Ang and De Leon (2005), and Moan (2005), among 

others. The reliability-based life-cycle analysis can provide (a) the expected total cost 

including the initial cost, inspection cost, maintenance and repair cost, and cost 

associated with structural failure during a predefined lifetime; (b) optimum inspection, 

maintenance and repair times; and (c) the expected structural performance during the 

service life of a structure.   

 

1.1.2 Prediction of Lifetime Performance under Uncertainty 

For the life-cycle analysis, understanding of deterioration mechanism and accurate 

performance prediction of a deteriorating structure are essential. The deterioration of 

structures may be caused by combined effects of progressive structure aging, 

aggressive environmental stressors, and loading conditions. The most common causes 

of resistance reduction of concrete and steel structures are corrosion and fatigue.  

Among the processes to induce deterioration of reinforced concrete (RC) bridges, 

corrosion of reinforcement in concrete was considered as predominant [Chaker 1992]. 

A significant amount of effort has been made to predict the propagation of corrosion 

damage [NCHRP 2005]. However, since the mechanism of RC degradation is highly 
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dependent on the environment and concrete material properties are uncertain, it is still 

not possible to accurately predict structural performance of deteriorating RC 

structures. Several studies focusing on probabilistic service life prediction have been 

conducted on deteriorating concrete bridges under corrosion [Frangopol et al. 1997a, 

Enright and Frangopol 1998a; Stewart 2004; Li et al. 2005].  

The deterioration of a steel structure over its service life can be the result of 

fatigue induced by various loadings [Fisher et al. 1998]. The fatigue can cause 

cracking, and lead to unexpected failure or out-of-service state of a steel structure. 

This problem is one of the major threats to the structural integrity of deteriorating 

steel structures [Akpan et al. 2002]. In order to consider uncertainties associated with 

the loading conditions, environmental stressors, fabrication, and modeling of steel 

structures subjected to fatigue, several probabilistic approaches have been used to 

assess and predict the fatigue structural performance [Madsen and Sørensen 1990, 

Madsen et al. 1991, Soares and Garbatov 1996a and 1996b, Ayyub et al. 2002].  

 

1.1.3 Life-Cycle Optimization 

Minimization of life-cycle cost is the most widely used criterion, but in reality 

multiple and conflicting objectives need to be considered simultaneously [Frangopol 

and Liu 2006]. For example, structural management decisions should be made by 

improving structural performance and reducing the life-cycle cost. The management 

planning of deteriorating structures can be formulated as a multi-objective 
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optimization problem with several performance indicators including system reliability, 

availability, condition and safety indices, and cost [Liu and Frangopol 2005a and 

2005b, Neves et al. 2006a and 2006b, Okasha and Frangopol 2009 and 2010b]. 

Structural managers can select one of the solutions from the Pareto optimal set, 

considering the financial resources and the performance level of the deteriorating 

structure. 

 

1.2 Problem Statement 

The importance of cost-effective maintenance of deteriorating structures under limited 

funds has been well documented. The topics of establishing management programs to 

maintain structural safety and serviceability above prescribed thresholds and extend 

the service life of deteriorating structures are of great interest. These studies require 

improved modelings of loadings and deterioration processes, accurate prediction of 

the structural performance, and proper estimation and optimum allocation of 

inspection, monitoring, and maintenance costs over time [Frangopol and Liu 2006 and 

2007, Frangopol 2011].  

In the last decades, structural health monitoring (SHM) has been widely applied 

to determine the location and severity of damage [Chang et al. 2003]. Significant 

efforts have been focused on technological advancements of SHM, and development 

of efficient data acquisition and interpretation algorithms for structures including civil 

infrastructures, naval ship and aircraft structures subjected to various deterioration 



www.manaraa.com

 7

mechanisms such as corrosion and fatigue [Chong et al. 2003, Farrar and Worden 

2007]. However, the field of integrating SHM concepts and methods into maintenance 

management of deteriorating structures under uncertainty is still in its infancy. The 

reliability assessment and prediction using monitored data has been studied only 

recently [Frangopol 2011].  

In general, the uncertainties associated with resistance and load effect for 

structural assessment are smaller than those associated with structural design due to 

the availability of information from site-specific response data [Liu et al. 2009a]. 

Therefore, the application of SHM has a great potential in cost-effective maintenance 

by reduction of uncertainty. This reduction can lead to preventing unexpected failure 

of a structure, assessing and predicting structural performance more reliably, and 

applying appropriate maintenance on time. As a result, it can yield the reduction of 

both the failure cost and maintenance cost [Frangopol and Messervey 2007, 2009a, 

2009b]. However, if the application of SHM is not cost-effective, and the use of SHM 

data is not efficient, then it will be difficult for structure managers to justify adopting 

SHM. Therefore, cost-effective monitoring planning and efficient use of SHM data 

should be considered in a life-cycle management framework. Furthermore, lifetime 

optimization of inspection, monitoring, and maintenance strategies needs to be 

investigated.    
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1.3 Research Objectives 

The followings are the main objective of this study: 

1. Develop approaches for efficient use of SHM data to assess and predict the 

structural performance in a life-cycle framework under uncertainty 

2. Develop probabilistic approaches for optimum inspection and monitoring 

planning. 

3. Develop probabilistic approaches for lifetime optimization of inspection and 

repair strategies.  

 

1.4 Benefits and Limitations of the Research 

1.4.1 Benefits 

• This study addresses probabilistic optimization, system reliability, modeling of 

uncertainties associated with damage propagation and inspection methods, 

deterioration models, expected life-cycle costs, non-destructive testing, and SHM 

in the integrated framework for optimum inspection, monitoring and maintenance 

planning.  

• This study proposes several novel concepts such as the availability of monitoring 

data, expected damage detection delay, time-based safety margin, and expected 

extended lifetime of a structure. These concepts are based on (a) reliability, (b) 

statistics of extremes, (c) decision analysis, (d) probabilistic analysis and 

prediction of damage occurrence, propagation and detection, and (e) cost 



www.manaraa.com

 9

estimation for inspection, monitoring and repair of structures. Even though these 

concepts have several limitations, they lay down the theoretical background for 

practical applications. 

• The approaches in this study are applied to highway bridges and ship structures 

subjected to corrosion or fatigue. However, the approaches in this study are 

general, and can also be applied to any type of structure subjected to various 

kinds of deterioration processes. 

 

1.4.2 Limitations 

• Probabilistic approaches for inspection, monitoring and maintenance planning in 

this study require the modeling of structural deterioration processes. In general, 

structural deterioration processes are very complex, and accuracy in these models 

is desirable. The modeling of the structural deterioration process itself is beyond 

the scope of this study. However, the proposed approaches for optimum 

inspection, monitoring, and maintenance planning may be used for updating 

information after each inspection or monitoring in order to improve the accuracy 

of the modeling of structural deteriorating processes. 

• The optimum monitoring planning includes decisions on (a) types of sensors, (b) 

location and number of sensors, and (c) operating duration of sensors [Farrar and 

Worden 2007]. The approaches proposed in this study are associated with the 

decision on operating duration of sensors, under the assumption that the 
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appropriate monitoring system for the expected damage is installed at the critical 

locations.  

• Cost estimations in this study are based on several assumptions. For instance, the 

failure cost representing the monetary loss due to a structural failure should be 

quantified considering various factors such as loss of life, reconstruction, and 

users inconvenience, among others [Estes and Frangopol 2005]. However, this 

study does not attempt to quantify the failure cost. Furthermore, the discount rate 

of money is assumed constant over time in this study. However, this rate may 

change over time. Moreover, different government agencies use different 

discount rates of money. The approaches for optimum inspection, monitoring, 

and maintenance planning can be affected by the failure cost and the discount 

rate of money. For this reason, this research includes the effects of several 

assumptions for cost estimation on the results. 

• Maintenance actions depend on the outcome of inspection or monitoring. If the 

damage is detected, maintenance should be applied as soon as possible. However, 

in reality, due to the limited financial resources, maintenance may not be applied 

just after damage detection. In this study, the decision maker’s willingness to 

make repair after damage detection is probability-based. In reality, this 

willingness depends on availability of funds and competing priorities.  

• In this study, the interaction between deteriorating processes such as corrosion and 

fatigue is not considered. The corrosion and fatigue processes can propagate 
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simultaneously, leading to a higher deteriorating rate of a structure than the case 

of separate propagation [Akpan et al. 2002].  

 

1.5 Organization of the Dissertation 

• Chapter 1 serves as introduction.  

• Chapter 2 presents the concepts of the reliability and service life of structures. 

The system reliability approach and its applications are presented. The effects of 

time-dependent structural performance on the service life of a structure are 

studied. Furthermore, the general concepts of optimal management using 

multi-criteria optimization are provided.  

• In Chapter 3, the approaches for efficient use of SHM are provided. These are (a) 

an approach to develop and update prediction functions, and (b) an approach for 

the assessment and prediction of structural performance using monitoring data. 

The general concept of reliability described in Chapter 2 is used to develop these 

two approaches. The mean square fitting to monitored data, acceptance sampling 

theory, and concept of reliability are used to establish and update prediction 

functions. Furthermore, in order to assess and predict the structural system 

performance through series-parallel system modeling, an approach using the 

long-term monitored strain data is proposed.  

• Chapter 4 proposes a novel approach for the optimum monitoring planning under 

uncertainty. This approach is based on a bi-objective optimization problem with 
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two conflicting criteria associated with the maximization of the expected average 

availability of the monitoring data and minimization of total monitoring cost. In 

order to solve this bi-objective optimization problem, the genetic algorithm is 

used. A solution of this problem provides uniform time interval between 

monitoring activities for an individual structural component. This process is 

extended to the approach for a structural system, considering reliability 

importance factors of structural components. In addition, decision analysis theory 

based on the minimum monetary loss criterion is used as an alternative approach. 

• Chapter 5 presents a probabilistic approach for optimum inspection and 

monitoring planning to minimize the expected damage detection delay. The 

formulation of damage detection delay considers the uncertainties associated 

with damage occurrence and propagation, and quality of inspection method. The 

optimization problem is formulated with the objective of minimization of the 

expected damage detection delay. This approach provides non-uniform time 

intervals between inspections or monitoring activities. The effects of the quality 

of inspection, number of inspections or monitoring activities, and monitoring 

duration on the expected damage detection delay are investigated. The 

bi-objective optimization problem is formulated by simultaneously minimizing 

the expected damage detection delay and the total inspection and/or monitoring 

cost. The solution of this bi-objective optimization includes types and time of 

inspections. A comparison of the cost-effective inspection plans based on a single 
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type and multiple types of inspections is carried out. Furthermore, an optimum 

combined inspection / monitoring planning is investigated taking into account the 

Pareto solution sets associated with all possible combinations of inspection and 

monitoring.  

• Chapter 6 extends the approach presented in Chapter 5 to cost-based optimum 

inspection and monitoring planning. This chapter describes the relationship 

between time-based safety margin and damage detection delay, and the expected 

total cost. The objective of the optimization problem in this chapter is to 

minimize the expected total cost consisting of the failure cost and inspection or 

monitoring cost. The failure cost is based on the time-based failure criterion 

defined using the damage detection delay and time-based safety margin. Effects 

of the failure cost on inspection and monitoring scheduling are studied.  

• Chapter 7 presents an approach for an optimum inspection and repair strategy 

under uncertainty to extend the lifetime of structures. The optimum strategy 

provided in this chapter consists in the maximization of the expected extended 

lifetime and the minimization of the expected total maintenance cost. The 

extended lifetime for a given number of inspections is formulated through a 

decision tree model. The decision maker’s willingness to make repair after 

damage detection is considered in this decision tree. The effects of inspection 

quality, repair approach and number of inspections on the expected extended 

lifetime are investigated.  
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• Chapter 8 summarizes this study, draws conclusions, and recommends future 

research directions.  
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CHAPTER 2 

 

 CONCEPTS OF RELIABILITY, SERVICE LIFE AND 

LIFE-CYCLE MANAGEMENT OF STRUCTURES 

 

2.1 Introduction 

The importance of maintenance for the deteriorating civil infrastructure has been 

recognized and many engineers have made significant efforts to extend the service life 

of existing civil structures effectively [Peil 2005, Frangopol 2011]. The service life of 

a structure is generally affected by its deterioration mechanisms and various 

environmental stressors under uncertainty [Smoak 2002]. Several probabilistic 

deterioration models for service life prediction have been presented [Frangopol et al. 

1997a, Enright and Frangopol 1998a, Ang and De Leon 2005, Moan 2005]. Based on 

these models, lifetime optimization methodologies for planning repair strategies of 

deteriorating structures have been developed to make structural managers decide the 

priority of maintenance interventions on a deteriorating structure [Frangopol et al. 

1997b, Enright and Frangopol 1999b, Estes and Frangopol 1999, 2001]. The expected 

service life, structural performance during its lifetime, and expected cost can be 

considered for the maintenance intervention [Frangopol et al. 2001, Kong and 

Frangopol 2003a].  

This chapter provides the concepts of the reliability and service life of civil 

structures. The system reliability approach and its applications are presented. The 

effects of time-dependent structural performance on the service life of a structure are 
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studied. Furthermore, the general concepts of optimal management using 

multi-criteria optimization are provided.  

 

2.2 Structural Reliability  

2.2.1 General Concepts 

In general, two types of uncertainties exist at present: aleatoric and epistemic. Due to 

aleatoric uncertainty (which relates to the inherent randomness of a process) and 

epistemic uncertainty (which is caused by lack of data and can be reduced by 

additional information), there always exists a probability of structural failure [Ang 

and De Leon 2005]. These two types of uncertainties make prediction of service life 

of a civil structure uncertain as shown in Figure 2.1. Therefore, these uncertainties 

should be treated in a rational way by using concepts and methods of probability and 

structural reliability theory [Ang and Tang 1984, 2007].  

Uncertainties associated with structural performance can be quantified using the 

concept of probability. Figure 2.1 shows that the performance of a structure has 

randomness associated with some physical quantities under uncertainty. This 

randomness may be identified through a function of a random variable such as 

probability density function (PDF). The service life, which can be defined as the 

expected time period for which the performance of a structure is above a target level, 

has its own PDF. 

This section introduces the concept of reliability and its application to define 
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uncertainty in structural behavior quantitatively. The reliability can be defined as the 

probability that an item will adequately perform its specified purpose for a specified 

period of time under specified environmental condition [Leemis 1995] and, in brief, a 

probabilistic measure of assurance of safe performance [Ang and Tang 1984]. In 

reality, the reliability problem of engineering systems can be expressed as a problem 

of supply and demand which are modeled by means of random variables. For instance, 

if R and S are the resistance and the load effect respectively, characterized by the PDF 

fR(r) and fS(s), respectively, the probability that S will not exceed R, P(R > S), 

represents the reliability of the structural system (see Figure 2.2). If R and S are 

statistically independent, the probability of failure, P(R < S), is  

   dssfsFp sRF 



0

 (2.1)

where FR(s) is the cumulative distribution function (CDF) of R. Therefore, the 

reliability can be formulated as 

   dssfsFp sRS 



0

1  (2.2)

As a general case, if R and S are not independent, the probability of failure can be 

expressed in terms of joint PDF of the random variables R and S,  R ,Sf r ,s , as 

  








0 0
, , dsdrsrfp

s

SRF  (2.3)

And the corresponding probability of survival is  

  








0 0
, , drdssrfp

r

SRS  (2.4)
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Safety margin 

The difference between resistance and load effect can be defined as safety margin M = 

R - S. The safety margin, M, is a random variable with PDF fM(m). As shown in Figure 

2.3, the area under the PDF upper bounded by m = 0 represents the probability of 

failure 

  


0
dmmfp MF  (2.5)

 

Reliability index 

The reliability index is defined as (see Figure 2.3) 

M

M


   (2.6)

where M and M are the mean and standard deviation of the safety margin, 

respectively. If R and S are independent, Equation 2.6 becomes 

22
SR

SR






  (2.7)

where R, S and R, S are the means and standard deviations, respectively. 

Furthermore, on the assumption that the safety margin M is normally distributed, the 

reliability index can be expressed as follows: 

 = Ф-1(pS) = Ф-1(1 – pF) (2.8)

where -1 is the inverse of the standard normal cumulative density function. The 

reliability index may be evaluated by using the first moment (i.e., the mean value) and 
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the second moment (i.e., the variance). Let the reduced variables of R and S be 

defined by  

R

RX
R




'  and 
S

SY
S




'  (2.9)

As shown Figure 2.4, the minimum distance from M = 0 to the origin of the space of 

reduced variables is equal to the reliability index  defined in Equation 2.7. 

 

State function 

The state function is related to the safety margin M = R - S. In general, the resistance 

and load effect consist of several variables. In order to generalize the problem 

considering these variables, the safety margin is formulated as a state function g(X) 

[Ang and Tang 1984]. 

g(X) = g(X1, X2, …, Xn) (2.10)

where X = (X1, X2, …, Xn) is a vector of design variables, and the state function g(X) 

determines the state as 

[g(X) > 0] → Safe state 

[g(X) < 0] → Failure state 

[g(X) = 0] → Limit state 

Considering a two-variable reduced space, the limit state, the safe domain, and the 

failure domain are illustrated in Figure 2.5. 
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2.2.2 System Reliability 

In general, structures are composed of many components. For each component, its 

various limit states (such as bending, shear, buckling, etc) may need to be considered. 

However, reliability of the individual structural component is not enough to guarantee 

the reliability of a structural system. Therefore, the problem of safety evaluation of 

existing structures can only be correctly assessed by considering the full structural 

system. In general, systems composed of multiple connected components can be 

classified as a series system (Figure 2.6(a)), a parallel system (Figure 2.6(b)), or a 

combined series-parallel system (Figure 2.6(c)). 

 

Series system 

In a series system (see Figure 2.6(a)), failure of any of its components constitutes the 

failure of the system; therefore, such a system has no redundancy and is also known 

as “weakest link” system. In other words, the reliability of the system requires that 

none of its components fail. The probability of failure pF can be expressed as the 

probability of union of component failure events 

   
1

0
N

F i
i

p p g


  X  (2.11)

The failure probability of the series system depends on the correlation among the 

safety margins of the components. The two extreme cases are as follows: 

(a) for perfectly correlated case: 
1

N

F Fii
p max p


  
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(b) for statistically independent case:  
1

1 1
N

F Fi
i

p p


    

The first-order bounds for the failure probability of a series system are [Cornell 1967] 

 
1 1

1 1
N N

Fi F Fii i
max p p p

 
     (2.12)

Closer bounds were developed by Ditlevsen (1979) using joint-event probabilities, 

which accounted for failure mode correlation 

1

1
2 1 1 2

0
k i k k

F Fi Fij F Fi Fijj ii j i i
p max p p , p p max p



   

              
 (2.13)

where pFij is the joint probability of occurrence of the ith and jth failure modes, and k 

is the number of potential failure modes of a series system. Figures 2.7(a) and (b) 

show the safe domain, the failure domain, and the limit state of component 1 and 

component 2, respectively, and in Figure 2.8(a), the safe domain and the failure 

domain are shown when these two components are linked in series. It should be noted 

that X1 and X2 associated with Figures 2.7 and 2.8 are uncorrelated normal random 

variables. 

 

Parallel system 

Failure of a parallel system (see Figure 2.6(b)) requires failures of all its components. 

Therefore, if any one of the components survives, the system remains safe. The 

probability of failure of a parallel system Pf can be expressed as the probability of 

intersections of component failure events 

   
1

0
N

F i
i

p p g


  X  (2.14)
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The failure of an N-component parallel system depends on the correlation among the 

safety margins of its components. The two extreme cases are as follows: 

(a) for perfectly correlated case: 
1

N

F Fii
p min p


  

(b) for statistically independent case: 
1

N

F Fi
i

p p


   

The first-order bounds for the failure probability of a parallel system are [Ang and 

Tang 1984]  

11

N

Fi F Fiii
p p min p


   (2.15)

Practically, the first-order bounds of the failure probability of a parallel system 

determined by Equation 2.15 may be too wide to be useful. Therefore, an alternative 

approach is used as follows [Thoft-Christensen and Murotsu 1986] 

   
      

  
 dep

N

T
sys

sys
NF   

  
 

1 2

12/1
2/ det2

1
(2.16)

where {β}={β1, β2 , …, βN }, ρsys is the system correlation matrix, and N is the number 

of members in the system. The safe domain and the reliability index of the parallel 

system consisting of the two components having the safety domains shown in Figures 

2.7(a) and (b) are indicated in Figure 2.8(a). By comparing Figures 2.8(a) and 2.8(b), 

it can be seen that both the safety domain and the reliability index of the parallel 

system are larger than those of the associated series system.  

 

Combined system 

A combined system can be modeled as a series system of parallel systems or a parallel 
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system of series systems. Consider a series system consisting of L parallel systems, 

where each parallel system i has Ni components (Figures 2.6(c)). The probability of 

overall system failure is given by 

  
1 1

0
iNL

F ij
i j

p p g
 

   
 

X   (2.17)

There are several computer programs such as CalREL [Liu et al. 1989] and RELSYS 

[Estes and Frangopol 1998] able to compute the probability of failure of combined 

systems. 

 

Reliability importance factor 

A structural system is composed of various components with different limit states. In 

general, the system performance can be assessed by using a series-parallel model. For 

effective maintenance strategy, it is necessary to rank structural components based on 

their reliability importance factors [Gharaibeh et al. 2002; Liu and Frangopol 2005c]. 

For instance, an individual component having the highest probability of failure in a 

series system has the highest impact on the system reliability. To quantify the impact 

of reliability of an individual component on the system reliability, the reliability 

importance factor (RIF) is used. The RIF of component i can be defined as the 

gradient of system reliability with respect to reliability of component i as [Leemis, 

1995] 
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S ,system

i

S ,i

p
RIF

p




  
(2.18)

where pS,system = system reliability; and pS,i = reliability of component i. The associated 

normalized reliability importance factor (NRIF) of component i is defined as 

[Gharaibeh et al. 2002] 

1

i
i N

j
j

RIF
NRIF

RIF





 

(2.19)

where N is the number of components in the system, and 0  NRIFi  1.0. For 

example, the reliability pS,series of a series system consisting of two statistically 

independent components is S,1 S,2p p  where, pS,1 and pS,2 are the reliability of 

components 1 and 2, respectively. From Equation (2.18), the RIFs of components 1 

and 2 become pS,2 and pS,1 , respectively. Therefore, the NRIFs of these components 

are, according to Equation (2.19), pS,2 / ( pS,1 + pS,2) and pS,1 / ( pS,1 + pS,2), respectively. 

However, since most structural systems have correlated components, it could be 

difficult to formulate the system reliability using component reliability directly.  

If the reliability of the system pS,system (i.e., series system, parallel system, or 

series-parallel system) is provided in terms of the reliabilities of N components as 

1 2S , S , S ,i S ,Nf ( p , p ,..., p ,..., p ) , where  S ,i S ,i ip p X  is the reliability of component i, 

and  1 2 ii i , i , i ,nX , X , ..., XX     is the vector associated with ni design variables of 

component i, the gradient of system reliability pS,system(X) with respect to the kth 

design variable of component i, Xi,k, is given by the chain rule as follows  
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When the design variable Xi,k is related to only the reliability function of component i, 

pS,i(Xi), Equation (2.20) becomes  

S ,system S ,system S ,i i

i ,k S ,i i i ,k

p p p )

X p ) X

  
 

  
(X

(X
 (2.21)

Therefore, from Equation (2.18), the RIF of component i can be approximated as 

[Kim and Frangopol 2010] 

   S ,system S ,systemS ,i i S ,i i
i

i ,k i ,k i ,k i ,k
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RIF / /

X X X X

         
                         

X X
 (2.22)

Equation (2.22) means that the RIF of component i is the ratio of change in the system 

reliability to change in the component reliability due to a small change in the variable 

associated only with the reliability function of component i. Therefore, the RIF can be 

computed by changing a variable, uncorrelated with other variables, of the state 

function defined in Equation (2.10). The reliability importance factor can provide 

useful information for selecting the optimal maintenance strategy. 

 

2.2.3 Application of Structural Reliability 

In order to compute the reliability of a structural system, it is first necessary to define 

the system model. As an example, a four span bridge with four girders in each span is 
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used (see Figures 2.9(a) and (b)). It is assumed that failure of any two adjacent girders, 

failure of the deck, or both result in the failure of the superstructure. Failure event of 

each span can be modeled by the combined model in Figure 2.10(a) and the failure 

models of the four spans are connected in series system (see Figure 2.10(b)). The 

reliability analysis of a system can be extended to bridge network reliability. 

Evaluation of a bridge network is based on connectivity between a start point (A) and 

an end point (B). Such a network with six bridges is indicated in Figure 2.11(a). The 

bridge network model is shown in Figure 2.11(b).  

 

2.3 Time-Dependent Reliability and Service Life 

2.3.1 Time-Dependent Effects on Structures 

An accurate reliability prediction model of a deteriorating structure is necessary to 

estimate the service life of a civil structure and to allocate the limited maintenance 

funds optimally for extension of its life. For establishing an accurate modeling of 

structural deterioration process, it is essential to accurately model both 

time-dependent mechanisms of resistance and load effect. Four cases are indicated in 

Figures 2.12(a) to (d) as follows: (a) time-independent resistance and load effect 

(Figure 2.12(a)); (b) time-dependent resistance and time-independent load effect 

(Figure 2.12(b)); (c) time-independent resistance and time-dependent load effect 

(Figure 2.12(c)); and (d) time-dependent resistance and load effect (Figure 2.12(d)). 

The mean safety margin profiles (i.e., the difference between mean resistance and 
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mean load effect) associated with the four cases shown in Figures 2.12(a) to (d) are 

indicated in Figure 2.12(e). 

 

Resistance 

Among the factors affecting the deterioration of concrete structures, corrosion is the 

main factor which may produce crack and spalling as well as loss of bond between 

concrete and reinforcing steel, and loss of steel section. In general, the deterioration 

process of reinforced concrete due to corrosion can be described by six steps 

[Thoft-Christensen 2003]:(a) chloride penetration in the concrete; (b) initiation of the 

corrosion of the reinforcement; (c) evolution of corrosion of the reinforcement; (d) 

initial cracking of the concrete; (e) evolution of cracks in the concrete; and (f) spalling. 

Corrosion in steel structures may be a very significant performance deterioration 

factor because most of components of a steel structure are exposed to environment 

directly.  

Fatigue in metals can be defined as the process of initiation and growth of cracks 

under repetitive stresses. If crack growth is allowed, failure of a steel member can 

occur and this process can take place at stress levels that are less than levels at which 

failure occurs under static loading condition. Generally the fatigue life of a fabricated 

steel structure may be determined by three factors as follows [Fisher et al. 1998]: (a) 

number of loading cycles; (b) stress range at the location of a steel member; and (c) 

type of detail of a steel member. All these factors can have an important effect on the 
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service life of a steel structure. 

 

Applied load 

Maximum stress reaching yield strength and number of stress cycles exceeding the 

critical number of cycles can induce failure of a structural system. Therefore, the 

accuracy of the time- dependent models for prediction of the maximum stress caused 

by loads and number of stress cycles under live loads is important. 

 

2.3.2 Analysis of Reliability of Deteriorating Structures and Service Life 

Performance of a civil structure decreases with time due to load increase, fatigue 

and/or environmental attack such as corrosion [Ellingwood 2005]. If the stochastic 

models of loadings and environmental stressors are established over time accurately, 

the performance deterioration of structural components and of the entire system can 

be determined. 

As an example, consider a series system and a parallel system both consisting of 

two components as shown in Figure 2.13(a). The time-dependent reliability indices of 

the two components are indicated in Table. 2.1. The relation between reliability index 

and probability of failure is determined using Equation 2.8, and the failure 

probabilities for the series system and parallel system are calculated by Equations 

2.12 and 2.15, respectively. Figures 2.13(b) and (c) show each component reliability 

index and the system reliability indices over time when the correlation between two 
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members is perfect and when the safety margins of the components are statistically 

independent. In the perfectly correlated case, the series system reliability is equal to 

the smaller reliability index (i.e., the reliability index of the less safe member), and the 

reliability of the parallel system is equal to the larger reliability index (i.e., the 

reliability index of the most safe member).  

As mentioned in section 2.3.1, the deterioration process of the performance of a 

civil structure depends on the time-dependent resistance and load effect. Figure 2.14 

shows the change of the mean safety margin associated with each case in Table 2.2. 

Under four different deteriorating processes (cases A, B, C and D in Table 2.2), the 

time-dependent reliability indices are calculated by using Monte Carlo simulation 

program, MONTE [Kong et al. 2000]. Random variables X1 and X3 correspond to 

resistance and variables X2 and X4 are associated with load effect. These four random 

variables are considered independent. In Figures 2.15(a) to (d), the system reliability 

index of the series system has the lowest value, and that of parallel system has the 

largest value at any time. Therefore, the time necessary to reach the target value of 

reliability index, βtarget = 2.0 (i.e., the service life of the system) is the lowest in case 

of the series system among all four cases. Also, the deteriorating rate associated with 

case D is the largest as shown in Figure 2.15(d). 

These analyses could be utilized to determine: (a) which component has more 

influence on the system reliability; (b) which component needs inspection, 

maintenance and repair for effective improvement of system reliability; and (c) when 
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the maintenance and repair are needed for optimal extension of service life of the 

system.  

 

2.3.3 Maintenance 

To extend the expected service life of a system, effective maintenance is necessary 

[Frangopol et al., 1997b; and Frangopol et al., 2001; Moan, 2005; Frangopol and Liu, 

2007, Okasha and Frangopol 2010b]. Therefore, preventive and/or essential 

maintenance are performed. Preventive maintenance is a time-based maintenance 

action, which is applied at predefined time instants to prevent the failure of the system. 

Preventive maintenance includes replacing small parts, patching concrete, repairing 

cracks, changing lubricants, and cleaning and painting exposed parts, among others. 

The essential maintenance is a performance-based action that it is immediately 

applied when some performance indicators reach predefined target values. In general, 

the essential maintenance follows an inspection, and includes replacing a bearing, 

resurfacing a deck, or modifying a girder of bridge. Preventive maintenance tends to 

be more frequent, less costly, and less efficient from the safety improvement 

viewpoint than essential maintenance.  

A reliability index profile (multi-linear profile) associated with two preventive 

maintenances and one essential maintenance is presented as shown in Figure 2.16. 

This profile consists of the followings: (I) structure retains the initial reliability index 

without any performance deterioration; (II) performance deterioration of the structure 
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begins with the rate r(0)
det until time Tmain,1; (III) first preventive maintenance is 

applied at time Tmain,1 , performance is improved, and deterioration continues but at 

smaller rate rdet, where, r(0)
det > rdet ; (IV) effectiveness of first preventive maintenance 

ends and the rate of the deterioration becomes r(0)
det; (V) at time Tmain,2, second 

preventive maintenance is applied, and the steps (III) and (IV) are repeated; and (VI) 

when the reliability index of structure reaches the target value, βtarget, the essential 

maintenance will be applied resulting in a substantial increase of the reliability index, 

imp,3 (i.e., imp,3 > imp,2 , imp,3 > imp,1 ). The reliability index profile including 

maintenance effects can be expressed by non-linear profiles. Based on these 

characteristics of maintenance, effective maintenance strategy can be formulated as a 

multi-objective optimization problem in which the objectives are minimizing 

maintenance cost and maximizing the service life.  

 

2.4 Optimum Maintenance  

2.4.1 Optimization of Lifetime Maintenance 

The optimum maintenance strategy depends on many factors including the expected 

service life and the associated assumptions. The reliability of an entire system 

provides significant information for determination of maintenance strategy rather than 

the reliability of any individual component [Estes and Frangopol 1999]. To show that 

the maintenance strategy is mainly based on the reliability of a system, the three 

options indicated in Table 2.3 are applied to two systems (series and parallel system) 
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consisting of two perfectly correlated components with time dependent reliability 

index functions as indicated in Table 2.1.  

As shown in Table 2.3, option 1 depends on the lowest reliability index, option 2 

depends on the system reliability index, and option 3 considers both component 

reliability and system reliability. Figure 2.17(a) shows the reliability index profiles 

during 100 years for the series system. It is assumed that the expected replacement 

cost for each component is the same, $1,000, and the failures of the two components 

are perfectly correlated. Total maintenance cost, Cmain, can be computed as follows: 

 
 


main

imain
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i
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dis

imain
main
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C
C

1

,

,1
 (2.23)

where nmain = number of maintenance applications, Cmain,i = cost of ith maintenance, 

Tmain,i = time for ith maintenance, and rdis = discount rate of money. The discount rate 

is assumed rdis = 2 % / year. 

• Repair Option 1 for series system: The first replacement will be conducted for the 

component 1 at year 35, the second replacement will be for the component 2 at year 

50, and the third replacement will be for the component 1 at year 70. The total 

maintenance cost associated with the repair option 1 is 

     
58.121,1$

02.01

000,1

02.01

000,1

02.01

000,1
705035 








mainC . 

• Repair Option 2 for series system: This system will be replaced entirely at year 35 

and 70, when the system reliability index will reach 2.5. The total maintenance cost is  
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   
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000,1000,1

02.01

000,1000,1
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


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• Repair Option 3 for series system: Component 1 will be replaced at year 35, 

component 2 at year 50, and component 1 at year 70. The total maintenance cost 

associated with option 3 is as follows: 

     
58.121,1$

02.01

000,1

02.01

000,1

02.01

000,1
705035 








mainC . 

For the series system, options 1 and 3 are identical. In the series system, the 

component with the lowest reliability is the most important and controls the system 

reliability. Therefore, repair options 1 and 3 are the optimum repair strategies for this 

case (see Figure 2.18). 

For the parallel system made of the same two components as the associated 

series system, the reliability index profiles during the specified service life of 100 

years are shown, for each repair option, in Figure 2.17(b). The assumptions and 

discount rate for the analysis of this parallel system are the same as those used for the 

analysis of the associated series system.  

• Repair Option 1 for parallel system: The first replacement will be conducted for the 

component 1 at year 35, the component 2 will be replaced at year 50, and the third 

replacement will be for the component 1 at year 70. The total maintenance cost is 

     
58.121,1$

02.01

000,1

02.01

000,1

02.01

000,1
705035 








mainC . 

• Repair Option 2 for parallel system: This parallel system will be replaced at year 50 
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and when the system reliability index of this system will reach 2.5. The total 

maintenance cost is  

 
06.743$

02.01

000,1000,1
50 




mainC . 

• Repair Option 3 for parallel system: At year 50 the system reliability will reach 

βsystem = 2.5 and the reliability of component 1 will be 1.0. Therefore, the first 

replacement for component 1 will be at year 50, and the second for component 2 will 

be at year 80. The total maintenance cost for repair option 3 is  

   
64.576$

02.01

000,1

02.01

000,1
8050 





mainC . 

This parallel system in which the failures of two components are perfectly correlated 

has the reliability index profile that is governed by the component with the largest 

reliability. Therefore, repair option 3 can be considered as the optimal maintenance 

strategy in this example as shown in Figure 2.19. Estes and Frangopol (1999) 

provided the computational platform for the time-dependent reliability analysis of 

existing highway bridges and established the basis for the optimum lifetime 

maintenance approach under uncertainty.  

 

2.4.2 Multi-Criteria Lifetime Optimization 

There are many practical applications for life-cycle cost analysis where the designer 

may want to optimize two or more objectives simultaneously [Frangopol and Liu 

2007; Furuta et al. 2006]. For example, decrease cost for maintenance and increase of 



www.manaraa.com

 35

structural performance are two conflicting objectives. In this case, multi-criteria 

optimization should be applied by simultaneously minimizing a set of objective 

functions. Optimum solutions which are on the minimal boundary of the feasible 

criterion space are called Pareto optimal set as shown in Figure 2.19. In order to solve 

the multi-objective optimization problem, the following approaches can be applied as: 

(a) weighted sum, (b) weighted min-max, (c) weighted global criterion, (d) 

ε-constraint, and (e) genetic algorithm [Arora 2004]. The characteristics of these 

approaches are indicated in Table 2.4. Decision on which multi-objective optimization 

approach is most appropriate depends on user’s preferences and efficiency of the 

computational process for a particular application [Flouda et al. 1999]. Decision 

makers have to compare different possible solutions from the multi-objective 

optimization problem and choose the best compromise. Liu and Frangopol (2004, 

2005a, 2005b) proposed a multi-objective optimization approach with respect to 

condition index, safety index, and cumulative maintenance cost. Neves et al. (2006a 

and 2006b) considered a full probabilistic multi-objective optimization for single 

maintenance (silane or rebuild) and combined maintenance (silane and rebuild). 

Considering the objectives of system reliability, redundancy and life-cycle cost, the 

maintenance interventions was studied by Okasha and Frangopol (2009).  

 

2.5 Summary 

This chapter presents concepts of reliability, service life, maintenance and 
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optimization of structural systems. The service life of a structural system under 

uncertainty can be predicted using time-dependent reliability analysis. Optimization 

process can be used to establish optimal maintenance intervention during given target 

lifetime [Frangopol 2011].  

The concepts of probability and structural reliability can provide a rational tool 

to treat uncertainties (i.e., aleatoric and epistemic) related to structural performance 

quantitatively. These concepts can be extended to prediction of time-dependent 

reliability and service life of structural systems considering deteriorating processes. 

Multi-criteria optimization under uncertainty allows structure managers to actively 

compare different solution options and choose the one that best balances their 

objectives and constraints. 
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Table 2.1 Time-dependent reliability indices  

Reliability index at time t (years) 

Component 1: β1(t) = 6.0 – 0.1t 

Component 2: β2(t) = 5.0 – 0.05t 

 
 
 
 
 
Table 2.2 State functions of components 1 and 2 with different time-dependent 
resistance and load effect  

 Component 1 Component 2 

 g1= R1(t) – S1(t) g2=R2(t) – S2(t) 

R1(t) = X1 R2(t) = X3 Case A 
Time independent R  
Time independent S S1(t) = X2 S2(t) = X4 

R1(t) = X1(1-(t/100)2) R2(t) = X3(1-(t/100)2) Case B 
Time dependent R 
Time independent S S1(t) = X2 S2(t) = X4 

R1(t) = X1 R2(t) = X3 Case C 
Time independent R 
Time dependent S S1(t) = X2(1+(t/100)2) S2(t) = X4(1+(t/100)2) 

R1(t) = X1(1-(t/100)2) R2(t) = X3(1-(t/100)2) Case D 
Time dependent R 
Time dependent S S1(t) = X2(1+(t/100)2) S2(t) = X4(1+(t/100)2) 

X1; N (µ1=90, ϭ1=15) X3; N (µ3=80, ϭ3=10) 
Random variables 

X2; N (µ2=50, ϭ2=4.0) X4; N (µ4=50, ϭ4=5.0) 

Note: N = normal distribution; i = mean of random variable Xi; i = standard 
deviation of random variable Xi 
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Table 2.3 Performance-based repair options 

Option 1 • If the reliability index of a component reaches 2.5, the component will 

be replaced.  

• The reliability index of the new component will have the value of 

initial reliability index of the replaced component. 

Option 2 • If the reliability index of a system reaches 2.5, every component will 

be replaced.  

• The reliability index of the system will have the value of its initial 

reliability index. 

Option 3 • If the reliability index of a system reaches 2.5 or the reliability index 

of a component reaches 1.0, the critical component will be replaced 

with a new component having the same initial reliability index as that 

of the replaced component.  

• For a series system, the system reliability is at most equal to the 

reliability of the weakest component. Conversely, for a parallel 

system, the system reliability is at least equal to the reliability of the 

strongest component. For this reason, components will always be 

replaced when the reliability index of the series system reaches 2.5. 
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Table 2.4 Characteristics of approaches to multi-objective optimization problem 
(adapted from Arora 2004) 

Approach 
Can yield all 
Pareto set? 

Depends on 
function 

continuity? 

Uses 
utopia 
point? 

Always yields 
Pareto optimal 

point? 

(a) Weighted sum No 
Depends on 

objective 
functions 

Yes Yes 

(b) Weighted 
min-max 

Yes Same as above Yes Yes 

(c) Weighted global 
criterion 

No Same as above Yes Yes 

(d) ε-constraint No Same as above No Yes 

(e) Genetic 
algorithm 

Yes No No Yes 
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Figure 2.1 Lifetime performance of structure under uncertainty 
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Figure 2.2 Probability density functions of R and S 
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Figure 2.3 Probability density function of safety margin M and the reliability index  
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Figure 2.4 Reliability index  in the space of reduced variables R’ and S’ 
 
 
 

x1'

x2'

Safe domain
g(X1, X2) > 0

Limit state
g(X1, X2) = 0

Failure domain
g(X1, X2) < 0

 
 

Figure 2.5 State function for limit state, safe state, and failure state in space of 
reduced variables X1’ and X2’ 
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Figure 2.6 (a) Series system; (b) parallel system; and (c) combined series-parallel 
system 
 
 
 
 



www.manaraa.com

 44

(a) 

x1
'

x2
'

g1 < 0
Failure domain

g1= 0
Limit state

g1 > 0
Safe domain

Component 1

 
 
 

(b) 

x1
'

x2
'

g2 < 0
Failure domain

g2 = 0
Limit state

g2 > 0
Safe domain

Component 2

 
 
 

Figure 2.7 Safe and failure spaces for (a) component 1; (b) component 2 
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Figure 2.8 Safe and failure spaces for (a) series system; (b) parallel system 
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Figure 2.9 (a) Bridge elevation, and (b) cross section 
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Figure 2.11 (a) Bridge network, and (b) series-parallel path model 
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Figure 2.12 Time-independent and time-dependent R and S: (a) time-independent; (b) 
time-dependent resistance and time-independent load effect; (c) time-independent 
resistance and time-dependent load effect; (d) time-dependent resistance and 
time-dependent load effect, and (e) profiles of mean safety margin of cases (a), (b), (c), 
and (d)  
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Figure 2.12 Time-independent and time-dependent R and S: (a) time-independent; (b) 
time-dependent resistance and time-independent load effect; (c) time-independent 
resistance and time-dependent load effect; (d) time-dependent resistance and 
time-dependent load effect, and (e) profiles of mean safety margin of cases (a), (b), (c), 
and (d) (continued) 
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Figure 2.12 Time-independent and time-dependent R and S: (a) time-independent; (b) 
time-dependent resistance and time-independent load effect; (c) time-independent 
resistance and time-dependent load effect; (d) time-dependent resistance and 
time-dependent load effect, and (e) profiles of mean safety margin of cases (a), (b), (c), 
and (d) (continued) 
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Figure 2.13 (a) Series and parallel systems; (b) time-dependent series system 
reliability index; and (c) time-dependent parallel system reliability index 
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Figure 2.14 Time-dependent safety margins under the cases A, B, C, and D in Table 
2.2: (a) component 1 and (b) component 2 
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Figure 2.15 Time-dependent reliability index: (a) case A, (b) case B, (c) case C, and 
(d) case D 
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Figure 2.15 Time-dependent reliability index: (a) case A, (b) case B, (c) case C, and 
(d) case D (continued) 
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Figure 2.16 Multi-linear reliability index profiles with and without maintenance 
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Figure 2.18 Total maintenance cost for series and parallel system under the three 
maintenance options in Table 2.3 
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Figure 2.19 Pareto optimal sets: minimize objectives A and B 
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CHAPTER 3 

 

 EFFICIENT USE OF STRUCTURAL HEALTH MONITORING 

FOR LIFE-CYCLE COST AND PERFORMANCE PREDICTION 
 

3.1 Introduction 

In the last decade, structural health monitoring (SHM) has been applied as an 

attractive tool with various purposes including (a) preventing unexpected structural 

failure through improved structural performance assessment, (b) predicting the 

remaining service life of a structure with improved accuracy, and (c) providing the 

information to support cost-effective maintenance decision processes [Frangopol et 

al. 2008b, Liu et al. 2009b]. Most of recent research has been focused on 

technological advancements of SHM, damage detection using SHM, and 

development of efficient data acquisition and interpretation algorithms [Chong et al. 

2003, Farrar and Worden 2007]. Development of the methodology to efficient use of 

monitoring data for accurate assessment and prediction of the structural performance 

under uncertainty is needed. This methodology will lead to cost-effective life-cycle 

maintenance planning.  

This chapter presents an approach for the development of prediction functions 

and a procedure for the performance assessment of structures using monitored 

extreme data. The updating of prediction functions is based on mean square fitting to 

monitored extreme data assigned to monitoring periods, while the necessary 
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monitoring periods are computed from acceptance sampling theory. Furthermore, 

based on the long-term monitored strain data induced by heavy vehicle traffic on an 

existing bridge, an efficient approach to assess and predict the structural system 

performance through series-parallel system modeling is proposed. The correlations 

among the structural component are directly obtained from monitored strain data. 

The prediction of structural performance in the future is dependent on the component 

performance functions considering the monitored data. Sensitivity studies with 

respect to system modeling, correlations and measurement errors are carried out. The 

proposed approaches are applied to an existing highway bridge in Wisconsin, which 

was monitored in 2004 by the Advanced Technology for Large Structural System 

(ATLSS) Engineering Research Center, a National Engineering Research Center at 

Lehigh University, Bethlehem, Pennsylvania, USA. 

 

3.2 Structural Health Monitoring for Structural Safety Evaluation 

3.2.1 Structural Safety in Design 

The structural safety in design is traditionally quantified by comparing the structural 

capacities, R, with the load effects, S. The deterministic Allowable Stress Design 

(ASD) adopts the concept of the factor of safety, F.S., where F.S. = R / S. The 

structural safety is achieved by defining the minimum required F.S. from previous 

experiences and expert opinions. The uncertainties in R and S are somewhat combined, 

and are implicitly considered when assigning the minimum allowable F.S. In current 
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semi-probabilistic Load Resistance Factored Design (LRFD), such as the LRFD 

Bridge Design Specification [AASHTO 2007], the Building Code Requirements for 

Structural Concrete [ACI 318 2005], and the Steel Construction Manual [AISC 325 

2005], the concept of the reliability index β is introduced in code calibration. The 

uncertainties in R and S are considered separately by assigning different load factors, 

γi, and resistance factors n through rational calibration procedures, where the target 

reliability β for each type of structural element (e.g. beam, column, slab) is assigned 

to maintain an acceptable probability of failure.  

One of the important limitations associated with ASD and current LRFD 

methodologies is the lack of consideration of structural system reliability. In other 

words, the structural safety in design can be quantified at the level of structural 

component only, although the analytical models of structural system reliability are 

ready for adoption [Frangopol et al. 2001]. The absence of the structural system safety 

considerations in current design codes, with the exception of system factor modifiers 

in the LRFD Bridge Design Specification [AASHTO 2007], reflects the needs for 

future efforts to check the analytical models, where SHM may play a vital role. 

The probabilistic performance-based design follows the fundamental structural 

safety concept where the structural safety can be quantified by safety margin M = R – 

S, where R and S are random variables and their uncertainties are fully investigated by 

advanced analytical and experimental techniques through statistical and probability 

considerations. Evolution of structural design methodologies from ASD to LRFD to 
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performance-based system design has revealed the importance of uncertainty 

consideration in balancing economical and safety aspects of structural designs. It is 

uncertainty consideration that distinguishes advanced design philosophy from 

traditional design principles, and yield cost-effective designs while keeping structural 

reliability level acceptable.  

 

3.2.2 Structural Safety in Evaluation 

The structural safety in evaluation of existing structures should be quantified in the 

same way as that in design of new structures. However, most of current structural 

safety evaluation practices focus only on condition assessment and evaluation of 

construction materials. For example, ASCE (2000) provides the general assessment 

procedures, evaluations of construction materials of concrete, metal, masonry and 

wood, and documentation formats. ACI 437R-03 (2003) recommends the load testing 

procedures and criteria, in addition to analytical investigation procedures. Although 

AASHTO (1989) supports the adoption of the concepts of structural reliability, the 

structural safety in evaluation is still quantified by using a “notional” truck, which 

does not represent any actual loading conditions on a bridge. In short, although many 

structural field tests have been conducted for the purposes of damage detection, 

verification of finite element models (FEM) among others, the structural safety in 

evaluation has not been clearly defined and standardized yet [Frangopol et al. 2008a].  

It should be worth noting that the uncertainties in the structural capacity R and 
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the load effect S are much different in structural evaluation than in design. In general, 

the uncertainties in R and S for structural evaluation are smaller than those associated 

with structural design due to the availability of site-specified information on structural 

capacities and loading conditions. Moreover, the live load models in current structural 

design codes are usually established for general applications with conservative 

assumptions, although the live loads such as traffic volumes and wind speeds may 

vary considerably from site to site. The use of actual live loads from structural field 

investigations including SHM may have a great potential in repair and rehabilitation 

cost-saving by taking advantages of the differences between the actual live loads and 

those specified in the live load models.  

 

3.2.3 SHM for Structural Performance Evaluation  

SHM can be defined as a long-term observation of the responses of a constructed 

facility to the changes of its surrounding environment through instrumentation and 

field testing techniques to assess the current condition and reliability of a structure 

and predict in future performance. The long-term requirement may be satisfied by 

measuring and recording the structural responses and changes of the environments 

either continuously or within a predefined time interval along the service lifetime of 

the constructed facility. There is an essential difference between SHM and structural 

field testing, where structural field testing is usually conducted very few times (e.g. 

once or twice) during the life of a structural system or after occurrences of major 
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disasters such as earthquake, flood, hurricane, and explosion. The structural 

responses refer to both mechanical responses (e.g. strain due to change in 

temperature, stress under traffic loading) and physical changes (e.g. deformation and 

cracking under fatigue loading, loss in sectional area due to steel corrosion).  

Current SHM has been conducted for different purposes, but can be classified 

as either for condition assessment or for performance evaluation. The condition 

assessment measures physical, chemical and/or mechanical properties of structural 

components. The damage state and/or condition index of the important components 

in a structural system are the typical indicators that can be obtained from condition 

assessment. The condition assessment techniques have been well developed and 

documented, particularly by using NDE, but the effects of structural component 

damage states on structural system safety are seldom studied. The condition 

assessment results can only affect the structural resistance R. Load effect S still has 

to be assumed for structural safety evaluation. Therefore, the structural safety under 

actual loading conditions can not be quantified from condition assessment. However, 

the condition assessment results are useful to predict future condition and 

performance of a structural component or system when effectively integrated into 

carefully developed physical models. On the other hand, the performance evaluation 

directly measures and records the structural responses subjected to the controlled 

and/or uncontrolled loading conditions. The combined effects of resistance R and 

load effect S on structural safety may be evaluated from the performance evaluation, 
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if the monitoring periods are long enough.  

 

3.3 Benefit of Structural Health Monitoring in Life-Cycle Cost 

The most valuable aspects of application of SHM are related to reduction of 

uncertainty. The reduction of uncertainty can lead to preventing unexpected failure 

of a structure, assessing and predicting more reliably structural performance, and 

applying appropriate maintenance on time. As a result, it can allow the reduction of 

both the failure cost and maintenance cost. The general formulation of the expected 

life-cycle cost CET is [Frangopol et al. 1997b] 

CET = CINI + CPM + CINS + CREP + CFAIL (3.1)

where CINI = initial cost (i.e., design and construction cost), CPM = the expected cost 

of routine maintenance, CINS = the expected cost of inspection, CREP = the expected 

cost of repair, and CFAIL = the expected cost of failure. If SHM is applied, the 

expected total cost C*
ET will be [Frangopol and Messervey 2009a] 

C*
ET = C*

INI + C*
PM + C*

INS + C*
REP + C*

FAIL + CMON (3.2)

where CMON = monitoring cost. From the difference between the expected costs from 

Equations (3.1) and (3.2), the benefit of SHM, BMON, can be determined as CET – 

C*
ET,. If the application of SHM does not provide a benefit (i.e., BMON < 0), it will be 

difficult for structure managers to justify adopting SHM. Therefore, efficient use of 

SHM should be considered, in order to maximize the benefit of SHM. 
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3.4 Prediction Functions based on Monitoring Extreme Data 

Sensors of monitoring systems can provide information at specific locations. 

Continuous combination of information provided by sensors in space and time can 

allow the assessment of the space- and time-dependent system performance 

[Frangopol and Messervey 2009a, 2009b]. Several approaches have been proposed 

for determining the optimal sensor placement to minimize the number of sensors 

[Shi et al. 2000 Worden and Burrows 2001, Meo and Zumpano 2005]. However, 

significant efforts related to the efficient inclusion of monitoring data in the 

assessment, prediction of structural performance, and optimized intervention 

planning of maintenance actions are still needed.  

SHM to monitor the response of a structural system to external loadings (e.g., 

live load, temperature) requires a large storage system if all the data are recorded. 

The size of data depends on the monitoring frequency and the number of installed 

sensors on the structural system. Generally, in order to reduce the data amount and 

manage it effectively, the information associated with the extreme physical quantities 

can be recorded [Mahmoud et al. 2005]. This information can be mainly used to 

evaluate fatigue structural performance, but can be also used for serviceability 

performance. The prediction function based on the monitored extreme data can 

provide helpful information to predict effective stress range and the number of 

cycles using the relation among the variation of the monitored extreme data in time. 
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Therefore, the prediction function can be effective for the assessment and prediction 

of fatigue structural performance [Frangopol et al. 2008b, Strauss et al. 2008].  

 

3.4.1 Prediction Functions 

There are numerous prediction functions for the description of structural degradation 

processes that do not take into account the information available from the monitored 

extreme data. Most of these functions are based on advanced analytical formulations 

[Stehno et al. 1987, Teply et al. 2006]. However, the use of the monitored extreme data 

is necessary for a more accurate estimation of prediction functions fp. Polynomial 

approaches of first, second, or higher order can be generally used for defining 

prediction functions, such as 

0

opn

iP i

i

f a t


            nop = 1, 2, 3 (3.3)

where ai = coefficients, nop = order of the polynomial function, and t = time.  

 

3.4.2 Processing Monitoring Data for Prediction Functions 

The coefficients ai in Equation (3.3) can be obtained by using the following three 

successive steps as:  

Step I: Finding the necessary monitoring period  

The duration of the necessary overall monitoring period mdt  can be computed based 

on an accepted probability p of monitored extreme data fexm to overcross the prediction 
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function fp (i.e., fexm > fp) per time interval ti and the confidence level Clevel associated 

with this probability. Therefore, it is necessary to define in advance the probability p 

and the confidence level Clevel = 1-  , where  is the probability that the monitored 

extreme data is not larger than fp (i.e., fexm  fp). The overall period mdt  is divided in 

equal time intervals, e.g., monitoring time periods ti-1 = ti = ti+1 as shown in Figure 3.1. 

The definition of the duration of these intervals depends on the monitoring frequency, 

the characteristics of the recorded data, the mathematical formulation of the prediction 

function, and the duration of the overall monitoring period.  

The required magnitude of mdt can be computed by an acceptance sampling 

approach as [Ang and Tang 2007] 

     1 1 1 1mdt p m            (3.4)

where Φ-1(·) = inverse of the standard normal cumulative distribution function, pacept = 

acceptable fraction of violations during tmd (i.e., SP /tmd). SP represents the number of 

allowable violating samples (i.e., fexm > fp) during tmd. Equation (3.4) can be rearranged 

as follows 

 
   

1

1 1

1

/
md

p md

t
p S t



 

 

 

 (3.5)

 

Step II: Finding the prediction function  

Once the monitoring period tmd is computed, the coefficients ai of Equation (3.3) can 

be obtained. The mean square fitting to the monitored extreme data provides the 
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coefficients ai. These coefficients represent the tendency of the monitored extreme 

data fexm. To match the previously defined criterion (i.e., Sp = 1) for the computation of 

the overall monitoring period tmd the prediction function fp must be moved (see Figure 

3.1). This updating is carried out via a new set of coefficients as follows 

0

' '
opn

iP i

i

f a t


            nop = 1, 2, 3 (3.6)

Equation (3.6) represents a translation of the initial prediction function fp towards the 

threshold of the investigated physical quantity (see Figure 3.1). The above defined 

procedure for the location of f’p does not restrict the magnitude  of the violating 

extreme values f’exm
 (see Figure 3.1). The constraint on  can be given by using the 

chart method [Levine et al. 2001]. Considering the magnitude , the updated 

prediction function f’p for the monitoring duration tmd can be obtained. More detail 

procedure is provided in Frangopol et al. (2008b) and Strauss et al. (2008). 

 

Step III: Updating the prediction function for successive monitoring periods 

The definition and updating of prediction function f’p as described previously are 

based on a single monitored period tmd. Monitoring is a continuous process allowing 

access to the past and the current structural performance assessment. Therefore, in 

order to account for these aspects, the updating of the prediction functions has to be 

extended. For instance, a polynomial function associated with the first order will 

require at least two monitoring periods to determine a prediction function  1' ,i it t
pf   
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using the past (tmd,i-1) and the current (tmd,i) monitoring information. Therefore, the 

previous described process for the computation of a’i should be based on a first order 

polynomial  1' ,i it t
pf   spanning at least two periods tmd,i-1 and tmd,i as shown in Figure 

3.2. 

 

3.4.3 Application 

The I-39 Northbound Bridge over the Wisconsin River was built in 1961 in Wausau, 

Wisconsin. The bridge carries the northbound traffic of the interstate I-39 as shown in 

Figure 3.3. It is a five span continuous steel plate girder bridge. The alignments of the 

horizontal curved girders are symmetric with respect to the mid point of the third span.  

The monitoring program for this bridge included the assessment of the strain of 

specified structural components and, for the entire structure, a controlled testing and 

long-term assessment. Strain gages as well as linear variable differential magnetic 

based transformers (LVDTs) were used for the monitoring program [Mahmoud et al. 

2005]. More details about the aim and results of the monitoring program are given in 

Mahmoud et al. (2005). The proposed approach in this section is applied to the 

monitored data of the sensor CH15. This sensor was mounted on the bottom flange 

of the Northbound Bridge girder as shown in Figure 3.3. The sensor was located at 

this position, since the stress concentrations and crack initiations due to the welded 

flange cover plates associated with field splices are significant at that detail 

[Mahmoud et al. 2005]. 
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Prediction function for the monitoring period tmd,1 

The duration of the long term monitoring for CH15 installed on the I-39 Northbound 

Bridge was 97 days [Mahmoud et al. 2005]. In order to obtain prediction functions f’p 

in Equation (3.6), it is first necessary to compute the duration of monitoring tmd. An 

accepted probability of violation p = 0.10 per day, with a confidence level Clevel = 

0.975 (i.e.,  = 1  Clevel = 0.025), based on a single violating sample Sp = 1 yields 

according to Equation (3.5) to a monitoring period tmd,1 = 22.3 days. Figure 3.4(a) 

shows the prediction function associated with the monitoring period tmd,1 = 22.3 days. 

The coefficients of the first-order prediction function fp
(1) to the extreme values of the 

monitoring period tmd,1 = 0 to 22.3 days are 0a  = 24.347 and 1a = 0.1042. The 

coefficient 0'a = 32.5 of the adjusted prediction function f’p
(1), which satisfies the 

constraint of only one violating sample Sp = 1 within the monitoring period tmd,1, can 

be obtained using the chart method.  

 

Prediction functions for successive monitoring periods 

In order to take into account the past monitored information, the prediction function 

f’p
(1,2)

 can be based on the monitoring periods tmd,1 and tmd,2, and the next prediction 

function f’p
(2,3) based on the periods tmd,2 and tmd,3 as shown in Figures 3.4(b) and 

3.4(c). Therefore, the updating of the coefficients of the prediction function has been 

performed by considering the monitored extreme data of the two associated monitored 
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periods. Figure 3.4(c) shows the previously defined steps for f’p
(2,3): (a) fitting the 

polynomial first order to the monitored extreme data of tmd,2 and tmd,3, (b) shifting the 

polynomial towards the monitored extreme values Sp of tmd,2 and tmd,3 by updating 0a , 

and (c) verifying the magnitude  by using the chart method. It has to be noted that due 

to the small differences between f’p
(1,2) and f’p

(2,3) the prediction function f’p
(2,3) is 

replaced by f’p
(1,2). Figure 3.4(d) shows the prediction functions of the monitored 

periods tmd,i associated to the sensor CH15 for the whole monitoring program of the 

I-39 Northbound Bridge.  

 

Reliability profile associated with yield strength 

The monitored data and the design data of the I-39 Northbound Bridge provide the 

basis for the probabilistic assessment with respect to steel yielding. The assessment is 

strongly influenced by the steel grade. The steel used in the girders of the I-39 

Northbound Bridge is M270 Grade 50W. The nominal yield strength of this steel is 

345 MPa (50 ksi). The probabilistic analysis requires the mean value and standard 

deviation of all random variables. For this steel, there have already been performed 

extensive examinations of probabilistic models for the yield strength, the tensile 

strength, and their correlation [Strauss et al. 2006]. The probabilistic descriptors of the 

yield strength for the steel girder σyield of the I-39 Northbound Bridge are derived from 

these investigations which yield to a mean value of 380 MPa and a standard deviation 

of 26.6 MPa. These probabilistic descriptors serve as the mean µR and standard 
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deviation R of the steel resistance R.  

The long term monitored data displays the variability of the stresses caused by 

traffic, temperature, shrinkage, creep and structural changes. The stresses from the 

dead weight of the steel structure and the concrete deck are not included in the 

measured data. Therefore, the computation of the reliability index profile p 

associated with the prediction function f’p defined in Equation (3.6) has to be based 

on additional information. The reliability index associated with the monitored data of 

the sensor CH15 can be computed as follows 

 22 2 2

R steel conc p p

conc p pR steel

µ µ µ µ
    

   


   
 (3.7)

where µp, p = mean and standard deviation of the stress associated with the 

prediction function f’p, respectively; µsteel, steel = mean and standard deviation of the 

stress caused by the dead weight of steel, respectively; µconc , conc = mean and 

standard deviation of the stress caused by the dead weight of concrete, respectively; 

and p is a factor assigned to the data provided by sensors. 

The stresses associated with sensor CH15 are not the maximum stresses 

representative for the yield strength assessment. Figure 3.3 shows that the sensor 

CH15 is located out of the middle (maximum stress domain) of the girder in the 

second lateral span. Several simulations according to different load combinations 

showed that the traffic load located in the second and fourth span produces the 

maximum stress in the bottom of the steel girder. The factor p assigned to the 
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measured sensor data and the stresses to be expected in the middle of the second 

lateral field, as derived from the numerical simulations, is 1.15. The values of 

descripters (i.e., resistance: µR = 380 MPa and R = 380  0.07 = 26.6 MPa , stress by 

dead weight of steel: µsteel = 116.3 MPa  and steel = 116.3  0.04 = 4.65 MPa, and 

stress by dead weight of concrete: µconc = 108.8 MPa and conc= 108.8  0.04 = 4.35 

MPa) yield to  

   2 22 2 2 2

380 116.3 108.8 1.15 155 1.15

26.6 4.65 4.35 1.15 27.35 1.15

p p
p

p p

µ µ


 

     
 

     
 (3.8)

The adjusted prediction functions f’p
(1) to f’p

(3,4) in Figure 3.4 of the monitoring 

periods tmd,1 to tmd,4, respectively, lead to the p profile according to Equation (3.8) as 

shown in Figure 3.5. The p profile serves for the assessment of the measured 

physical quantity in time and can also be used as reliability prediction function for a 

defined time horizon. For instance, Figure 3.5(a) shows the p
(1) profile, based on the 

monitored extreme data obtained from the first 22.3 days. Figures 3.5(b) to 3.5(d) 

show the p profiles, according to the monitored extreme values of the four periods 

tmd,1 to tmd,4. The use of monitored extreme data allows (a) the reduction of 

uncertainties associated with numerical models, (b) the validation and updating of 

existing prediction models, and sometimes, the creation of novel prediction models.  
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3.5 System Performance Assessment and Prediction Using Monitoring Data 

3.5.1 Assessment of Structural Performance 

The state function is related to the difference between resistance R and load effect S 

(i.e., safety margin M). The state function of component i can be formulated in terms 

of the monitored physical quantity (e.g., stress, strain) as [Liu et al. 2009a and 2009b, 

Kim and Franopol 2010] 

gi (qi)= qlimit,i − qmon,i (3.9)

where qi = (qlimit,i, qmon,i) is a vector of physical quantities of component i, qlimit,i = 

predefined upper limit of physical quantity of component i, and qmon,i =  physical 

quantity obtained from monitoring system installed on the critical location of 

component i. The predefined limit qlimit,i and the monitored physical quantity qmon,i 

can both be treated as random variables. In this section, the probability that the 

monitored physical quantity does not exceed the predefined limit serves as the 

reliability measure.  

 

3.5.2 Prediction of Structural Performance 

In order to predict structural performance, a probabilistic approach based on 

monitored data is applied. If the predefined limit is assumed to be constant over time, 

gi(qi, t) can be formulated as  

gi(qi, t) = qlimit,i − ζi(t)  qmon,i (3.10)
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ζi(t) is defined as the ratio of the expected largest value during future time period t to 

the largest value obtained during the monitored period [Liu et al., 2009a and 2009b]. 

This ratio can be derived from the recurrent probability using monitored data. If the 

monitored stress is considered as the physical quantity of interest, the random stress 

induced by all vehicles crossing a bridge can be assumed as Gaussian. In this case, 

the largest stress max, induced by only heavy vehicles, is asymptotically 

approaching a Gumbel distribution (i.e., double exponential distribution). The CDF 

of max is [Gumbel 1958] 

max
max( ) exp exp par

par

F
 




  
        

 (3.11)

where λpar = location parameter; and par = scale parameter. The largest stress 

max(NT) among the stresses induced by the expected number of heavy vehicles NT 

during future time period T can be predicted from    max( ) 1 1/T TF N N    [Ang 

and Tang, 1984]. Therefore, 

max

1
( ) ln ln(1 )T par par

T

N
N

  
 

     
 

 (3.12)

Consequently, the time-dependent function ζi(t) can be obtained as:  

 
 max,1 max,2 max, max,

ln ln 1 1/
( ) max ; 1.0

max , ,..., ,...,

par par T

i

j No

N
t T

 

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          
  

  (3.13)

where max,j = monitored maximum stress induced by j-th heavy vehicle on a bridge; 

and No = number of heavy trucks crossing the bridge during the given monitored 

period To. However, there is no guarantee that the largest stress max will 
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asymptotically approach a Gumbel distribution. For this reason, in order to select the 

most appropriate PDF of the largest stress max, the relative goodness of fit tests have 

to be performed with several candidate distributions. 

 

3.5.3 Application 

The proposed approach is applied to an actual bridge over the Wisconsin River 

(Bridge I-39, Northbound) in Wisconsin. As mentioned in Section 3.4.3, the I-39 

Northbound Wisconsin River Bridge is a five-span continuous steel girder bridge. 

The controlled load tests including crawl tests (speed up to 8 km/h (5 mph)) and 

dynamic tests (speed up to 108 km/h (65 mph)) were performed between 9 am and 

11 am on July 28, 2004, by employing two tri-axle dump trucks with the gross 

vehicle weights (GVW) of 296.5 kN (67.2 kips) and 329.2 kN (74.6 kips), 

respectively. This study focuses on the monitored data from Channels 3, 4, 5, and 6 

which measured and recorded the structural responses of the east exterior girder (G4), 

east interior girder (G3), west interior girder (G2), and west exterior girder (G1), 

respectively. As shown in Figure 3.6, the corresponding sensors were installed at the 

bottoms of the bottom flanges.  

In order to minimize the volume of monitoring data and to consider only the 

heavy vehicles, recording of the data in Channels 3 and 6 was triggered when the 

vehicle induced the strain larger than the predefined strain [Mahmoud et al. 2005]. 

There were a total of 893 events captured during the monitoring period of 95 days 
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(i.e. Ntt = 893), of which the 636 heavy vehicles crossed the bridge on the right lane 

(i.e. Nrt = 636), and the 249 heavy vehicles crossed the bridge on the left lane (i.e. Nlt 

= 249). In addition, there were only 8 occurrences when the heavy vehicles crossed 

the bridge side-by-side (i.e. Nss = 8) during the monitoring period. Figures 3.7(a) to 

3.7(d) present the histograms of the recorded 893 maximum stresses, which clearly 

demonstrate that the individual girders of a multiple girder bridge may have quite 

different responses to the identical loading patterns from actual heavy vehicle traffics. 

The frequency diagrams in Figures 3.7(a) and 3.7(d) have two modes, and in Figures 

3.7(b) and 3.7(c) have only one mode. This indicates that the exterior girders (G1 

and G4) may be more sensitive to the transverse positions of the heavy vehicle 

traffics than the interior girders (G2 and G3). As indicated in Equation (3.9), the 

probability that the monitored data from the strain gage do not exceed the predefined 

limit from controlled test serves as reliability measure in this application.  

 

Assessment of component reliability 

Figure 3.8 presents the histograms of the maximum stresses σmax recorded on the east 

exterior girder (G4) under the right lane (see Figure 3.8(a)), and left lane (see Figure 

3.8(b)) heavy vehicle loading conditions. The dash lines in Figure 3.8 represent the 

best fitting probability function for the histograms, (i.e. the generalized extreme 

value (GEV) distribution). The GEV distribution is defined as  
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 (3.14)

where ξpar = shape parameter; ρpar = scale parameter; λpar = location parameter. Table 

3.1 provides the best fitting values of the GEV parameters and the exceedance 

probability P(σmax,i,j > σlimit,i) associated with Girder 4. P(σmax,i,j > σlimit,i) means the 

probability that the maximum monitored stress σmax,i,j associated with girder i (i = 1, 

2, 3 and 4) under the jth lane loading condition (j = rt, lt and ss represents the 

loading condition under the right lane, left lane, and side-by-side heavy vehicle 

traffics, respectively) exceeds the predefined limit σlimit,i associated with girder i. In 

order to consider different loading conditions (right, left and side-by-side lane 

loadings), the theorem of total probability is applied. The exceedance probability of 

girder i P(σmax,i > σlimit,i) is expressed as  

  rt lt ss
max,i limit ,i max,i ,rt max,i ,lt max,i ,ss limit ,i

tt tt tt

N N N
P P

N N N
     

  
         

 (3.15)

Similarly, the best fitting values of the GEV parameters and corresponding P(σmax,i > 

σlimit,i) for the girders G1, G2 and G3 are also summarized in Table 3.1, where the 

girder G4 has the highest probability P(σmax,4 > σlimit,4) = 0.1432. The predefined 

stress limit σlimit,i in Equation (3.12) can treated as the normal distributed random 

variable with the mean value equal to the maximum stress measured during the 

controlled load tests, and the coefficient of variation (COV) is assigned to be 4% 

(including dispersion of the measurement errors during the controlled load tests). 
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Considering the measurement error, the state function for component i is defined 

using Equation (3.12) as 

  rt lt ss
i limit ,i e max,i ,r max,i ,l max,i ,ss

tt tt tt

N N N
g C

N N N
   

 
        

 
iσ  (3.16)

where Ce = measurement error factor. The measurement errors factor Ce is assumed 

to be normally distributed random variable with the mean value of 1.0 and the COV 

of 0.02.  

 

Assessment of system reliability 

The system reliability is assessed by using the series-parallel system model shown in 

Figure 3.9 (System Models I, II and III). The coefficients of correlation ρ (X, Y) are 

directly obtained from the monitored data x and y as follows: 

2 2

( )( )
( , )

( ) ( )

x y

x y

x y
X Y

x y

 


 

 


 

 

 (3.17)

where x  and y  are the mean values of the monitored data x and y, respectively. 

Table 3.2 presents the resulting ρ(X, Y) for all heavy vehicle loading conditions, 

based on the actual monitored data. Although ρ(X, Y) may vary with time, ρ(X, Y) is 

considered as time-invariant in this study, due to lack of the actual monitored data 

other than those obtained in 2004. The state function of Equation (3.16) is used to 

formulate the exceedance probabilities for System Models in Figure 3.9. These 

probabilities for System Models I, II and III are obtained as 0.002%, 0.012% and 

0.483%, respectively, using RELSYS [Estes and Frangopol, 1998]. From this result, 
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it may be concluded that the proposed approach is sensitive to the system models 

adopted.  

 

Sensitivity studies 

The sensitivity studies with respect to the measurement errors are conducted by 

varying the standard deviation of the measurement errors factor Ce in Equation (3.13) 

from 2% up to 8%. Figure 3.10 presents the corresponding exceedance probabilities 

for System Models I, II and III. It may be concluded that the increases of the 

measurement errors may result in increasing the probabilities of exceedance, 

regardless of the types of the system models adopted. In addition, the probabilities of 

exceedance with both perfect and zero correlations among the random variables in 

Equation (3.13) are computed for System Model I, II and III, respectively. Figure 

3.11 shows that assuming independent random variables (i.e., the coefficients of 

correlation = 0.0) yields to smaller probabilities of exceedance of the structural 

system than those based on the actual coefficients of correlation. Conversely, the 

assumption of perfect correlations (i.e., the coefficients of correlation = 1.0) results 

in conservative assessment. Thus, it is important to obtain the actual coefficients of 

correlation directly from the monitored data.  

 

Prediction of system reliability 
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The exceedance probability of the system is predicted by using Equation (3.13). 

According to the original monitored data, there were 636 and 249 heavy vehicles 

captured under the right and left lane traffics, respectively, during the monitoring 

period of 95 days. Therefore, it is estimated that the annual number of the heavy 

vehicles are approximately 2,500 on the right lane and 1,000 on the left lane, 

respectively. Consequently, the total number of the passages of the heavy vehicles in 

the next t years will be NT = 2,500 × t for the right lane, and NT  = 1,000 × t for the 

left lane. Figure 3.12 presents the computed exceedance probabilities of system of 

the bridge at current time (i.e. in 2004) and the predicted probabilities of exceedance 

during the next 5, 10, 15 and 20 years. It should be noted that the increases in the 

exceedance probabilities with time in Figure 3.12 are caused by the predicted 

increases of the load effects from the heavy vehicle traffics only.  

 

3.6 Conclusions 

In this chapter, current structural safety approaches for design of new structures and 

assessment of existing structures are briefly reviewed, and benefit of SHM in 

life-cycle cost analysis are discussed. Furthermore, this chapter presents an approach 

for the development of prediction functions and a procedure for the performance 

assessment of structures based on monitored extreme data. A practical approach to 

assess and predict structural performance based on SHM is also proposed. The 

following conclusions can be drawn. 



www.manaraa.com

 84

1. The proposed performance prediction functions based on monitoring extreme 

data can lead to the following benefits as (a) instantaneous inclusion of 

environmental and degradation processes in the structural reliability assessment; 

(b) reduction of time in the processing of monitored data of the observed physical 

quantity; and (c) flexible updating of performance functions associated with the 

reliability index or to any performance indicator by using acceptance criteria 

applied to monitored extreme data. This approach can provide an efficient 

support tool to both designer and owner for the optimum lifetime planning of 

deteriorating structural systems.  

2. The approach based on the newly developed component state function using 

monitored data is proposed. This approach can effectively assess the structural 

system performance using the SHM data. However, the system models that 

combine the bridge component performance functions in different series and 

parallel forms may greatly affect the results.  

3. The success in the structural system performance assessment and prediction 

using SHM data depends on how correctly and completely the structural system 

is modeled in terms of all critical components and their contributing response 

mechanisms.  

4. In order to achieve valuable system performance assessment, it is important to 

obtain the actual coefficients of correlation among the random variables directly 

from the monitored data.  
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Table 3.1 Best fitting values for parameters of the GEV probability distributions, and 
probabilities P(σmax,i,j > σlimit,i) and P(σmax,i > σlimit,i)  

Parameters of  

the GEV probability 
distributions Girder Traffic 

λpar σpar ξpar 

P(σmax,i,j > σlimit,i) P(σmax,i > σlimit,i) 

Right 
Lane 

10.02 2.64 0.105 0.007 

Left 
Lane 

23.14 3.63 -0.195 0.226 G1 

Side by 
Side 

23.57 4.90 0.102 0.370 

0.07086 

Right 
Lane 

13.39 2.36 0.104 0.0070 

Left 
Lane 

20.04 3.08 -0.096 0.0367 G2 

Side by 
Side 

22.01 6.21 -0.047 0.2810 

0.01772 

Right 
Lane 

20.97 3.25 -0.036 0.085 

Left 
Lane 

13.02 3.16 0.174 0.028 G3 

Side by 
Side 

25.37 3.12 0.125 0.320 

0.08312 

Right 
Lane 

21.87 2.89 0.051 0.182 

Left 
Lane 

9.81 3.96 0.122 0.032 G4 

Side by 
Side 

24.86 3.71 -0.658 0.425 

0.14319 
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Figure 3.1 Prediction function fp based on monitored extreme data during tmd 
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Figure 3.2 Updating the prediction function fp 
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(a) SENSOR CH15 – GAGE
PREDICTION FUNCTION for p = 0.10 and Clevel = 0.975 
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Figure 3.4 Prediction functions: (a) f’p

(1) of the monitoring period tmd,1; (b) f’p
(1,2) of 

the monitoring periods tmd,1 and tmd,2; (c) f’p
(2,3) of the monitoring periods tmd,2 and 

tmd,3; and (d) f’p
(3,4) of the monitoring periods tmd,3 and tmd,4 
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Figure 3.4 Prediction functions: (a) f’p

(1) of the monitoring period tmd,1; (b) f’p
(1,2) of 

the monitoring periods tmd,1 and tmd,2; (c) f’p
(2,3) of the monitoring periods tmd,2 and 

tmd,3; and (d) f’p
(3,4) of the monitoring periods tmd,3 and tmd,4 (continued) 
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Figure 3.5 Reliability profiles based on (a) the prediction function f’p

(1); (b) the 
prediction functions f’p

(1) and f’p
(1,2); (c) the prediction functions f’p

(1) to f’p
(2,3); and 

(d) the prediction functions f’p
(1) to f’p

(3,4) 
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Figure 3.5 Reliability profiles based on (a) the prediction function f’p

(1); (b) the 
prediction functions f’p

(1) and f’p
(1,2); (c) the prediction functions f’p
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(2,3); and 

(d) the prediction functions f’p
(1) to f’p

(3,4) (continued) 
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Figure 3.8 Histograms and the GEV PDF of monitored data from CH 3 of Girder 4: 
(a) under the right lane loading; and (b) under the left lane loading 
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Figure 3.9 (a) System model I; (b) system model II; and (c) system model III 
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Figure 3.10 Effect of measurement error on exceedance probability of System 

Models I, II, and III 
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Figure 3.11 Effect of correlation among the monitored strain data on exceedance 
probability of System Models I, II, and III 
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Figure 3.12 Time-dependent exceedance probabilities of System Models I, II, and III 
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CHAPTER 4 

 

 MONITORING PLANNING BASED ON AVAILABILITY OF 

MONITORING DATA 

 

4.1 Introduction 

Uncertainty associated with the life-cycle performance prediction generally increases 

as the structural performance is predicted further into the future. SHM can 

substantially reduce the expected failure cost and the expected maintenance cost of 

deteriorating structural systems by improving the accuracy of predicted structural 

performance [Frangopol and Messervey 2007]. In order to maximize this potential 

benefit of SHM, information from monitoring must be used appropriately 

[Frangopol et al. 2008a and 2008b]. Ideally, continuous monitoring is needed to 

establish the optimal maintenance plan. However, this is not practical due to 

economical constraints and limited potential benefit of monitoring program. For this 

reason, the cost of monitoring and reliable performance prediction can be 

simultaneously considered in a bi-objective optimization formulation [Kim and 

Frangopol 2010 and 2011a].  

In this chapter, the probability that the performance prediction model based on 

monitoring data is usable in the future is computed by using the statistics of extremes. 

This probability represents the availability of the monitoring data over the future 

non-monitoring period. The optimum availability of the prediction model and 

optimum monitoring cost can be formulated as an optimization problem with two 
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conflicting criteria: minimization of the total monitoring cost and maximization of 

the availability of the monitoring data for performance prediction. This bi-objective 

optimization problem provides a Pareto solution set (i.e., optimum-balanced 

monitoring plan). This solution set provides the monitoring plan for an individual 

component of a structural system. Structural managers can choose the best 

monitoring plan from the Pareto set according to their preference and purpose. 

Furthermore, the monitoring plan for a component in a structural system can be 

changed according to the contribution of the component to the overall system 

reliability. In order to quantify this contribution, the NRIF of structural components 

has to be evaluated. Consequently, the total monitoring cost for a structural system 

has to be allocated based on NRIF. An alternative approach based on decision theory 

is also proposed. These approaches are applied to the monitored data of the I-39 

Northbound Bridge over the Wisconsin River in Wisconsin, USA, obtained by the 

ATLSS Engineering Research Center at Lehigh University. 

 

4.2 Exceedance Probability for Prediction Model 

4.2.1 Statistical Modeling of Extreme Values 

The extreme values of random variables can be treated as random variables 

themselves and have their own probability density function (PDF) that is related to 

the distribution of the initial variables [Ang and Tang 1984]. The PDF for the 
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extreme values can be derived from the statistical data associated with the n initial 

sample values. The maximum value of initial variable X is defined as 

Ymax = max{X1, X2, …, Xn}  (4.1)

If the random variables X1, X2, …, Xn are assumed to be statistically independent and 

identically distributed, the cumulative distribution function (CDF) of Ymax can be 

obtained for all n initial values of X1, X2, …, Xn as: 

       1 2max

n

Y max n XF y P Y y P X y,X y, . . . ,X y F y           (4.2)

Equation (4.2) represents the exact CDF of the extremes of n samples with identical 

distribution. As n  , asymptotic (or limiting) forms of Equation (4.2) may 

converge to a particular distribution type which depends on each end of tail’s 

behavior of the initial distribution. Gumbel (1958) categorized the asymptotic 

distributions into three types: (a) Type I asymptotic form (i.e., the double exponential 

form that holds for initial distributions of the exponential type); (b) Type II 

asymptotic form (i.e., the exponential form); and (c) Type III asymptotic form (i.e., 

the exponential form with upper bound). For example, the largest values of the initial 

variables with normal and exponential distributions having exponential tails 

correspond to Type I asymptotic distribution; Type II asymptotic distribution is the 

largest value distribution of lognormal distribution with a polynomial tail in the 

direction of the largest one; and the distribution of the extreme values of a uniform 

and triangular distributions with an upper or a lower limit converges to the Type III 
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asymptotic distribution [Ang and Tang 1984]. The three representative distributions 

mentioned previously are not exhaustive.  

 

4.2.2 Linear Prediction Function and Its Residuals  

In order to establish the prediction model, the relation between time (predictor 

variable) and physical quantity (response variable) can be assumed as a function. 

The prediction model can be approximated by a first-, second-, or third- order 

regression function based on the extreme value which can be relevant to the 

assurance of structural performance as mentioned in Section 3.4. The relationship 

between the real physical quantity and predictor variables is [Rosenkrantz 1997]  

Ot = fp (t) + xt (4.3)

where Ot is observed data at time t, fp and xt are the prediction function and the 

residual between values from the observed data and values from the regression at 

time t, respectively. As indicated in Equation (3.3), the prediction function can be 

expressed as  
0

opn
i

p i
i

f t a t


  , where ai = coefficient, nop = order of the prediction 

function, and t = time. As shown in Figure 4.1(a), if the regression model based on 

monitored data is linear, the order of the function nop should be 1.0 and the 

coefficients a1 and a0 can be obtained by minimizing the sum of the squared 

residuals (i.e., method of least squares). In general, the residuals between the values 

from the linear regression model and the actual data can be assumed normally 
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distributed with mean value 0. This assumption is valid if the data are mutually 

independent, the number of data is large enough, and the regression model is 

obtained appropriately [Rosenkrantz 1997].  

 

4.2.3 Exceedance Probability  

The extreme values of the residuals (i.e., initial variate) have their own probability 

distribution. If the residuals are normally distributed, their extreme values can be 

modeled by the double exponential form as shown in Figure 4.1(b) (i.e.,Type I 

asymptotic form) [Ang and Tang 1984]. The CDF of the double exponential form for 

the maximum positive value of the residual is  

     
maxY max max maxF y P Y y exp exp y           (4.4a)

and the CDF associated with the minimum negative value of the residual is 

     1
minY min min minF y P Y y exp exp y            (4.4b)

where max and min = scale parameters for Ymax and Ymin, respectively; and λmax and 

λmin = characteristic maximum and minimum values, respectively, of the initial 

variables which are the residuals between the predicted values and the observed 

values. If n samples associated with Equation (4.4a) are chosen as n daily maximum 

positive residuals (i.e., Ymax,1, Ymax,2, ..., Ymax,n), and if each sample is statistically 
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independent and identically distributed, according to Equation (4.2), the CDF of the 

largest value, Ymax,n, among n samples would be  

     
max,n max

n

Y Y max max,nF y F y exp exp y              (4.5)

where λmax,n = characteristic maximum values of Ymax. Based on Equation (4.5), the 

CDF of the maximum value, Ymax,N, among future N samples can be derived as 

follows 

      max,N max max

N / nN n

Y Y YF y F y F y         (4.6)

If λmax,n is assumed to be Ymax,n which is the largest positive residual among n current 

samples in Equation (4.5), the probability that the maximum positive residual, Ymax,N, 

in N future observations will be larger than the maximum positive residual, Ymax,n, 

among n current samples is given as [Ang and Tang 1984]  

P(Ymax,N > Ymax,n) = 1- {[FYmax(Ymax,n)]
n}N / n= 1- e-N / n (4.7)

Since n is the number of daily maximum positive residuals and N is the number of 

daily maximum positive residuals in the future, the probability that the largest 

positive residual in the future t days will exceed the largest positive residual among 

tmd monitoring days can be obtained by modifying Equation (4.7) as [Kim and 

Frangopol 2011a] 

   1exd mdP t = exp -t / t  (4.8)
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If the residuals between the values from the linear regression model and the 

actual data are not normally distributed, the procedure associated with Equations (4.4) 

to (4.7) can be applied after determining the appropriate distribution of the initial 

variate (i.e., the residuals) through distribution fitting tests. For example, if the 

extreme value from an initial distribution decays with an exponential tail (i.e., Type 

I), the exceedance probability is that in Equation (4.8). Furthermore, if the extreme 

value from an initial distribution decays with a polynomial tail (i.e., Type II), the 

final formulation of exceedance probability will be as that in Equation (4.8).  

In this chapter, Equation (4.8) is assumed as exceedance probability for the 

monitoring data to predict structural performance. The exceedance probability for 

the monitoring data based on monitoring duration tmd can have different values 

depending on the number of future exceedances of the maximum positive residual 

from tmd monitoring days. Furthermore, by taking into account the relation between 

Equation (4.8) and the Poisson process, the probability associated with the number 

of future exceedances Nexd can be expressed as 

     
!

exdn

md

exd exd md

exd

t / t
P N n = exp -t / t

n
  (4.9)

From Equation (4.9), the probability that the number of future exceedances, Nexd, 

will be at least one is 

     1 1 0 1exd exd mdP N = P N exp -t / t      (4.10)
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which is identical with Equation (4.8). In this manner, the exceedance probability 

associated with various numbers of future exceedances can be formulated. For 

instance, the probability that the number of future exceedances will be at least two is 

        2 1 0 1 1 md
exd exd exd md

md

t t
P N = P N P N  = exp -t / t

t

 
       

 
 (4.11)

Similarily, the number of future exceedances of the minimum negative residuals 

as well as the maximum positive residuals from tmd monitoring days can also be 

considered and formulated using Equation (4.5) to Equation (4.7). The formulation 

of the exceedance probability considering both the minimum negative residuals and 

the maximum positive residual can be developed. In this case, the probability that 

the maximum residuals in the future t days will exceed the largest positive residual 

among tmd monitoring days or the minimum residual in t days will downcross the 

minimum negative residual among tmd days has to be considered. This exceedance 

probability can be formulated as 

  1exd

md

t
P t = exp

t

 
  

 
  (4.12)

Table 4.1 summarizes exceedance probabilities with various numbers of future 

exceedances. 

 

4.3 Availability of Prediction Model for Monitoring at Regular Time Intervals 

The availability of a system can be defined as the probability that the system is in 

operating state [Ang and Tang 1984]. A system in an operating state can become 
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non-operating due to deterioration. Conversely, a system in a non-operating state can 

be returned to an operating state through appropriate repair (see Figure 4.2). The 

availability of monitoring data for structural performance prediction is defined as the 

probability that the prediction model based on monitoring data can be usable in the 

future. Similarly with the availability of a system, the prediction model can become 

non-usable, and can be restored to a usable state by the introduction of an update 

prediction model based on new monitoring data (see Figure 4.2). 

The average availability of monitoring data for structural performance 

prediction during a time period t characterized by two mutually exclusive and 

collectively exhaustive events (i.e., E1 = prediction model is usable and E2 = 

prediction model is not usable) is 

    1L
ua a

T
A P t P t

t
     0 < TL  t (4.13)

where TL is time to loose usability of prediction model, Pa(t) and Pua(t) are 

availability and unavailability of the prediction model during t, respectively (see 

Figure 4.3), and Pa(t) + Pua(t) = 1.0. Herein, the criterion for using monitoring data 

for prediction is associated with the maximum residual between values from 

prediction model and monitoring. If this residual exceeds the maximum residual 

during monitoring duration tmd , the prediction model cannot be used. According to 

this criterion, the unavailability of monitoring data Pua(t) can be replaced by the 

exceedance probability Pexd for the six cases of exceedance probabilities (Cases O1, 
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O2, O3, B1, B2, and B3) indicated in Table 4.1. Cases O1, O2, and O3 correspond, 

respectively, to at least one, two, and three exceedance(s) considering the largest 

value. Cases B1, B2, and B3 correspond, respectively, to at least one, two, and three 

exceedance(s) considering both upcrossing the largest value and downcrossing the 

smallest value, respectively.  

The expected average availability of the monitoring data for prediction can be 

derived from Equation (4.13) [Ang and Tang 1984] as 

        

 
      

 

0

0

1

1 1
1

1
1

L
exd exd

t exd
exd exd

exd

t

exd

E T
E A P t P t

t

P x
x dx P t P t

t P t x

P x dx
t

   

 
       

  





 (4.14)

For instance, using Equation (4.14), the expected average availability within 

prediction duration t of Case O1 in Table 4.1 is computed as [Kim and Frangopol 

2011a] 

   

 

0

0

1
1

1
1 1

1

t

exd

t

md

md

md

E A P x dx
t

exp x / t dx
t

t t
exp

t t

  

    

  
       



  (4.15)

The expected average availability is formulated by using the variables tmd and t. 

Figures 4.4(a) and 4.4(b) show the relations between the ratio rmd of monitoring 

duration tmd to prediction duration t and expected average availability  E A  for 

Cases O1, O2, O3, and B1, B2, B3 in Table 4.1, respectively. It can be seen that 
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higher the expected average availability of the monitoring data for prediction is, 

longer monitoring duration tmd is required relatively to prediction duration t. The 

expected average availability  E A  of Case O3 has the largest value in Figure 

4.4(a), since the prediction model associated with this case is less conservative than 

those associated with Cases O1 and O2. Similarly, Case B3 is associated with the 

largest expected average availability in Figure 4.4(b).  

 

4.4 Monitoring Cost and Optimum Balance of Monitoring Time Intervals  

4.4.1 Cumulative Monitoring Cost 

In general, monitoring cost is the result of the following actions: (a) general 

preparation and project coordination; (b) sensors, wiring, data acquisition system, and 

maintenance; (c) analysis of data and preparation of reports; (d) continuous review of 

data [Frangopol et al. 2008a]. Under the assumption that the total monitoring cost is 

proportional to the monitoring duration and all actions related to monitoring program 

are conducted only during the monitoring duration, the cumulative monitoring cost 

CMON over a prescribed duration is [Kim and Frangopol 2011a] 

   1
1

1

1

mon

md

n
md

MON mon,o i t t
imd ,o dis

t
C C

t r
 



  
         

  (4.16)

where Cmon,o = reference monitoring cost during tmd,o days, rdis = discount rate of 

money (%/day), and nmon = total number of monitoring periods over a prescribed 

duration (days).  
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4.4.2 Optimum Balance of Availability and Monitoring Cost Using Bi-Objective 

Optimization Formulation 

The potential benefit of SHM can be maximized by reducing the expected failure 

cost and maintenance cost of structural systems. Through appropriate SHM, 

structure managers can establish more rational maintenance strategies under 

uncertainty. A reliable performance prediction model will lead to cost-effective 

maintenance and repair actions. However, more reliable monitoring data and more 

frequent monitoring action require higher cost, and, as a result, it may be difficult to 

obtain the monitoring benefit in financial terms. Therefore, in order to find the 

optimal balance between the two conflicting criteria, bi-objective optimization 

should be applied. This approach minimizes the total monitoring cost and maximizes 

the expected average availability of the monitoring data for performance prediction.  

The optimization problem requires (a) design variables, (b) objectives 

formulated by including the variables, and (c) constraints for the variables and for 

the objectives. In this chapter, the two conflicting objectives can be defined as: (a) 

maximize the expected average availability of the monitoring data for prediction 

 E A  indicated in Equation (4.14); and (b) minimize the cumulative total 

monitoring cost MONC  indicated in Equation (4.16). In order to obtain well-balanced 

solutions, NSGA-II (Non-Dominated Sorting in Genetic Algorithms) program is 

used (Deb et al., 2002). The two major reasons for using genetic algorithms (GA) for 
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this optimization problem are: (a) GA does not require continuity or differentiability 

of the objective function [Arora 2004]; and (b) GA is able to converge to the Pareto 

optimal set rather than a single Pareto optimal point [Osyczka 2002]. Detailed 

procedure of NSGA-II is available in Deb et al. (2002).  

 

4.4.3 Optimal Monitoring Plan for a Structural System 

The reliability importance factor (RIF) of individual components can be considered 

for monitoring planning for a structural system. In order to estimate the 

time-dependent reliability of each component, the state function and the 

time-dependent function are applied as indicated in Equations (3.16) and (3.13), 

respectively. For assessment of the structural system performance, a series-parallel 

system model is used. Total monitoring cost for the structural system is allocated to 

the components according to their normalized reliability importance factors (NRIF). 

The allocated monitoring cost of each component determines the monitoring plan 

(i.e., monitoring duration and prediction duration) by using the Pareto optimal 

solution set of a bi-objective optimization problem which minimizes the total 

monitoring cost and maximizes the availability of monitoring data. 

The solutions obtained from the bi-objective optimization problem can provide 

possible monitoring schedules of the monitored structural component. In order to 

allocate the monitoring cost to each component in a structural system, the 

time-variant NRIF can be applied. The monitoring cost for the individual component 
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i, CMON,i , is [Kim and Frangopol 2010] 

 MON ,i MON ,system iC C E NRIF   (4.17)

where CMON,system = available total monitoring cost for a structural system during a 

prescribed period; and E(NRIFi) = average time-variant normalized reliability 

importance factor NRIFi (see Equation (2.19)) during the period. After the 

monitoring cost CMON,i of component i is assigned according to E(NRIFi) as indicated 

in Equation (4.17), the expected average availability and the design variables (i.e., 

monitoring duration and prediction duration) for the component can be determined 

from the Pareto solution set of the bi-objective problem. Figure 4.5 shows the 

schematic of the proposed methodology for establishing optimal monitoring 

planning for a structural system. The associated detailed flow charts are provided in 

Appendix (see Figures A.1, A.2 and A.3). 

 

4.4.4 Optimum Balance of Availability and Monitoring Cost Using Decision 

Analysis 

As an alternative method, decision analysis can be used to find the optimal solution. 

In general, if the decision is expressed in terms of a monetary value, the decision 

associated with the maximum expected monetary value (EMV) (i.e., minimum 

monetary loss) is the solution. EMV of the ith alternative is [Ang and Tang 1984] 

 i ij ij
j

EMV a p C   (4.18)
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where pij = the probability of the jth consequence associated with alternative ai, and 

Cij = the expected monetary of the jth consequence associated with alternative ai. 

According to the maximum monetary value criterion, the optimal alternative aopt is 

determined as the alternative having maximum EMV among n alternatives as: 

        1 2opt nC a max EMV a , EMV a , ..., EMV a (4.19)

EMV for cost-effective SHM can be formulated by using the expected average 

availability of the model and monitoring cost associated with different monitoring 

durations tmd and future non-monitoring durations t. As shown in Figure 4.6, 

monitoring plan i has two events ( j = 1, 2) that are mutually exclusive and 

collectively exhaustive: the monitoring data are either usable or not during prediction 

duration ti. For the usable case over the future non-monitoring period, the probability 

pij and the expected cost Cij of monitoring plan i in Equation (4.18) are replaced by 

the expected average  iE A  and the monitoring cost Cmon,i,u, respectively. On the 

other hand, for non-usable case over the future non-monitoring period, the 

probability pij in Equation (4.19) can be computed as  1 iE A . The cost associated 

with the non-usable case Cmon,i,nu can include the potential loss occurred from the use 

of non-usable monitoring data for prediction and the monitoring cost Cmon,i,u as well. 

Therefore, EMV associated with monitoring plan i is [Kim and Frangopol 2011a] 

      1mon ,i ,u i mon ,i ,nu iEMV Plan i C E A C E A      (4.20)
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If the monitoring cost is proportional to the duration of monitoring, the monitoring 

cost per day Cmon,i,u for the usable case can be calculated based on the reference 

monitoring cost Cmon,o during tmd,o days as: 

 mon ,o

mon,i ,u md ,i md ,i i

md ,o

C
C t / t t

t

 
   
 

 (4.21)

where tmd,i = monitoring duration, and ti = prediction duration for monitoring plan i. 

Therefore, the monitoring cost per day Cmon,i,nu for the non-usable case adding 

potential loss Closs is  

 mon ,o

mon,i ,nu md ,i md ,i i loss

md ,o

C
C t / t t C

t

 
    
 

 (4.22)

As a result, substituting Equations (4.21) and (4.22) into Equation (4.20), EMV for 

plan i is [Kim and Frangopol 2011a]    

   

    

,

, ,
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(  ) / 1

/ 1 1

mon o

md i md i i

md o

mon o

md i md i loss i

md o

C
EMV Plan i r r E A

t

C
r r C E A

t

            
              

 (4.23)

where rmd,i is the ratio of the monitoring duration, tmd,i, to the prediction duration, ti 

associated with monitoring plan i  

 

4.5 Application 

The methodologies proposed in this study are applied to the long-term monitored 

data from the strain gage CH4 which was installed on the bottom flange of the 
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Northbound Bridge I-39 as shown in Figure 3.6. The 80 days monitored data 

monitored data are used in this example.  

 

4.5.1 Expected Average Availability of Monitoring Extreme Data for Prediction 

The linear regression model as a performance prediction model is based on the ten 

maximum daily stresses during the 80 monitored days as shown in Figure 4.7(a). The 

residuals between the monitored data and values from the performance prediction 

model have the mean value of 0.0 MPa and the standard deviation of 4.7 MPa. The 

probability paper is used as shown in Figure 4.7(b) to check whether the appropriate 

distribution for these residuals is a normal distribution. For construction of the 

normal probability paper, 800 residuals are arranged in increasing order, and the ith 

residual value among the 800 data is plotted at the standard normal variate si = -1(i / 

(N+1)), where N = 800 and -1 is the inverse standard normal CDF. The regression 

line of these residuals on the normal probability paper can be obtained by the method 

of least square as shown in Figure 4.7(b). The slope of the regression line and 

y-intercept represent the standard deviation of the residual (4.68 MPa) and the mean 

value of the residual (0 MPa) respectively. To evaluate how well the estimated 

regression line fits the data, the coefficient of determination is used [Rosenkrantz 

1997]. This coefficient is defined as  

 
 

2

2

2

i

i

y y
R

f y





 (4.24)
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where yi = ith residual value, y = mean value of residual values, fi = value on the 

regression line associated with si. If R2 is close to 1.0, most of the data can be 

captured by the linear regression model [Rosenkrantz 1997]. R2 associated with 

Figure 4.7(b) is 0.9829. Additionally, the several relative goodness of fit tests (i.e., 

the Chi-square test, Kolmogorov-Smirnov test, and Anderson-Darling test) were 

performed with several candidate distributions in order to select the most appropriate 

distribution which fits the residuals. As a result, the normal distribution was selected 

as the best-fit distribution for the residuals. Therefore, the maximum and the 

minimum values have the Type I asymptotic distribution (i.e., the double exponential 

form). The scale parameters max and min of the maximum and the minimum values 

are 2 ln N /  = 2 800 4 68ln / . = 0.78 and the values of the characteristic 

maximum, λmax, and minimum, λmin, are assumed to be the maximum and minimum 

residuals of 14.97MPa and -11.49MPa, respectively, among 800 monitoring data. 

Therefore, the CDFs of the double exponential asymptotic form for the maximum 

and the minimum value of the residuals can be formulated (see Equation (4.4)).  

FYmax(y) = P(Ymax  y) = exp[-e-0.78 (y -14.97)] (4.25a)

FYmin(y) = P(Ymin > y) =1- exp[-e0.78 (y +11.49)] (4.25b)

Figure 4.7(c) shows the histogram from the residual, its appropriate distribution (i.e., 

normal distribution), and the PDFs of the extreme values of the initial variate (i.e., 

the residual values).  
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The expected average availability  E A  of the monitoring data for prediction 

can be obtained from Equation (4.14). Therefore, it can be formulated with 

monitoring duration tmd and prediction duration t. The relations between  E A  for 

80 days of monitoring duration tmd and the prediction duration t for the six cases in 

Table 4.1 are plotted in Figures 4.8(a) and 4.8(b). As expected,  E A  decreases as 

the prediction duration t increases.  

 

4.5.2 Optimal Monitoring Plan for a Structural Component 

The design variables of the bi-objective problem are the monitoring duration tmd and 

the prediction duration t. The variables tmd and t are assumed to be between 50 days 

and 3000 days. The target life is assumed 7,300 days (i.e., about 20 years), and the 

reference monitoring cost Cmon,o during tmd,o = 80 days is assumed $10,000. For each 

case indicated in Table 4.1, 1,000 Pareto solutions are obtained using genetic 

algorithm after 100 generations as shown in Figures 4.9, 4.10 and 4.11. The values 

of objectives and design variables for some of these solutions are provided in Tables 

4.2 and 4.3.  

Figure 4.9(a) represents the 1,000 Pareto solutions for Cases O1, O2 and O3 

without considering the discount rate of money (i.e., rdis = 0.0 %/day). In order to 

provide an expected average availability of the prediction model  E A  = 0.2 for 

Case O1 (i.e., Solution A1 in Figures 4.9(b) and 4.9(c)), the required monitoring 

duration and prediction duration have to be tmd = 405 days and t = 2,035 days, 
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respectively (see design space in Figure 4.9(b)), and the expected total monitoring 

cost has to be $151,875 (see Figure 4.9(c)). If  E A  has to increase four times (i.e., 

 E A  = 0.8 for Case O1; see Solution D1 in Figures 4.9(b) and 4.9(c)), the required 

monitoring duration and prediction duration have to be 1,665 days and 770 days, 

respectively (see design space in Figure 4.9(b)), and the expected total monitoring 

cost has to be $624,375 (see Figure 4.9(c)). The Solutions B1 and C1 associated with 

Case O1, where the expected average availability is 0.4 and 0.6, are also indicated in 

Figures 4.9(b) and 4.9(c), respectively. Since the allowable number of exceedances is 

larger for Case O2 than O1, and larger for Case O3 than O2 (see Table 4.1), the total 

monitoring cost associated with the same expected average availability will be 

maximum for Case O1 and minimum for Case O3 (see Figures 4.9 and 4.10). Figure 

4.9(d) and 4.9(e) indicate three solutions (D1, D2 and D3) associated with the same 

expected average availability (i.e.,  E A  = 0.8) for Cases O1, O2 and O3. If the 

discount rate of 0.016% per day (6% annual discount rate of money) is considered, 

the solutions in Figures 4.10(a) to 4.10(e) are obtained for each case and the 

associated results are indicated in Table 4.3. A substantial reduction in total 

monitoring cost is observed by comparing results in Table 4.3 with those in Table 4.2. 

The Solutions E1, F1, G1 and H1 (see Figures 4.10(b) and 4.10(c)) are much less 

expensive than Solutions A1, B1, C1, and D1 (see Figures 4.9(b) and 4.9(c)), 

respectively. The same observation is valid for Solutions H1, H2 and H3 (see Figures 

4.10(d) and 4.10(e)) as compared to Solutions D1, D2 and D3 (see Figures 4.9(d) 
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and 4.9(e)). This is due to the fact that both monitoring duration and prediction 

duration are highly affected by the discount rate (compare results in Figure 4.9(e) 

with those in Figure 4.10(e)). Figures 4.11(a) and 4.11(b) show the solutions for 

Cases B1, B2 and B3, without and with discount rate, respectively. It is worth noting 

that the total monitoring costs associated with Cases B1, B2 and B3 are higher than 

those associated with Cases O1, O2 and O3, respectively.  

 

4.5.3 Optimal Monitoring Plan for a Structural System 

The approach to establish an optimal monitoring plan for a structural system is 

applied to an existing bridge the Northbound Bridge I-39. In this application, the 

monitored data from four strain gages (i.e., CH 17, CH 18, CH 19, and CH 20) 

installed on the top face of the bottom flange of each girder in the second span (see 

Figure 4.12) were used.  

 

Assessment and prediction of structural performance 

The monitored live load strains obtained from four strain gages (CH 17, CH 18, CH 

19, and CH 20) are converted into stress data by using Hooke’s law. In order to 

assess the structural performance under uncertainty, the probabilistic distribution 

type of the maximum live load stress should be determined. Based on this 

distribution, the reliability with respect to a predefined stress limit can be assessed. 

Distribution fitting is the procedure of selecting the most appropriate distribution 
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which fits to monitored data. Among several fitting tests (i.e., the Chi-square test, the 

Kolmogorov-Smirnov test, and the Anderson-Darling test), the Anderson-Darling 

test (1952), which assigns more weight to the tail of a specific distribution, was 

performed using MINITAB (2007). Figures 4.13 and 4.14 show the histograms and 

the best-fit PDFs of maximum stresses induced by 249 passages of the heavy 

vehicles on the left lane and 636 passages of the heavy vehicles on the right lane, 

respectively, during 95 days. The best-fit distributions of maximum stresses from CH 

17, CH 18, and CH 19, which were induced by the heavy vehicles passing on the 

right lane, are Gumbel distributions (see Figures. 4.13(b), 4.13(c), and 4.13(d)). 

Lognormal distribution is the best-fit distribution for monitored maximum stresses 

from CH 20 of girder 1 under the right lane loading (see Figure 4.13(a)). The 

Gumbel distribution is defined as 

     X max max max max maxf x exp x exp exp x                  (4.26)

where max = scale parameters; and λmax = characteristic maximum values as 

indicated in Equation 4.4(a). The lognormal distribution is 

 
2

log

loglog

ln1 1
exp

22
X

x
f x  

x

            


 

 (4.27)

where log = mean of ln(X); and σlog = standard deviation of ln(X). Since the trigger 

level of CH 17 was set up to be 41.38 MPa (6.00 ksi), there is no maximum stress 

less than the trigger level, as shown in Figure 4.13(d). The best-fit distributions of 

monitored maximum stresses from CH 17, CH 18, CH 19, and CH 20 under the left 
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lane loading are shown in Figures. 4.14(a), 14(b), 14(c), and 14(d), respectively. 

There is no maximum stress from CH 20 less than 41.38 MPa (6.00 ksi) due to the 

trigger setup (see Figure 4.14(a)). The best-fit distributions and their associated 

parameters for the maximum monitored stresses from the four strain gages are 

summarized in Table 4.4.  

The state function for component i defined in Equation (3.16) is used to assess 

and predict the structural performance and RIF. The necessary variables to define the 

state function of each girder are provided in Tables 4.4. The predefined stress limit 

σlimit,i is assumed to be normally distributed with the mean equal to the maximum 

stress measured from controlled loading tests, and the coefficient of variation (COV) 

equal to 0.04. The measurement errors factor Ce is assumed to be normally 

distributed with the mean value of 1.0 and the COV of 0.02. The deterministic 

variables in the state function (see Equation (3.16)) are the total number of heavy 

trucks Ntt = 893, total number of heavy trucks passing on right lane Nrt = 636, total 

number of heavy trucks passing on left lane Nlt = 249, and total number of heavy 

trucks passing side by side Nss = 8. The coefficients of correlation among the 

variables are directly obtained from the monitored data as indicated in Table 4.5. 

Since the monitored maximum stresses under the left lane loading and the right lane 

loading are measured independently due to trigger-setup, the coefficients of 

correlation between monitored maximum stresses induced by heavy vehicles passing 

on different lanes are 0.0 (see Table 4.5). As the distance between strain gages is 
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shorter under the same loading condition, the coefficient of correlation has large 

values. For example, the coefficients of correlation between girders 1 and 2 under 

the right lane loading is 0.69, and the coefficient of correlation between girders 1 and 

4 under the right lane loading is 0.20 (see Table 4.5). For assessment of the system 

reliability for the predefined stress limit σlimit, series-parallel models are used as 

shown in Figures 4.15(a), 15(b), and 15(c). For System Model I in Figure 4.15(a) 

(i.e., the series system), the exceedance probability P(max > limit) represents the 

probability that monitored maximum stress of any component exceeds its predefined 

stress limit. The exceedance probabilities P(max > limit) for System Models II and 

III in Figures. 4.15(b) and 4.15(c) represent the probabilities that the predefined 

stress limits are exceeded by the monitored stresses in any two components, or any 

three components, respectively.  

The exceedance probability can be predicted by using the time-dependent 

function in Equation (3.13). To predict the expected number of the heavy trucks in 

the next T years, NT, based on the initial monitored data during 95 days, the annual 

number of the heavy vehicles is assumed to be 2,500 on the right lane, 1,000 on the 

left lane, and 30 side-by-side, respectively. Therefore, in the next T years, the total 

number of heavy trucks crossing the bridge on the right lane, left lane, and side-by 

side will be 2,500 × T, 1,000 × T, and 30 × T, respectively. Figures 4.16(a) and 16(b) 

show the time-dependent exceedance probabilities P(max > limit) for the four girders 

and for the System Models I, II, and III, respectively. It should be noted that the 
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exceedance probability serves as the reliability measure in this chapter. 

 

Time-dependent normalized importance factor (NRIF) 

Based on the prediction of the reliability for the predefined stress limit, NRIF can be 

computed using Equations (2.19) and (2.22). The predefined stress limit for each 

component σlimit is treated as the independent variable in Equation (2.22), since the 

predefined limit from controlled tests has no relation to the monitored stresses. 

Figures 4.17(a), 17(b), and 17(c) show the time-dependent NRIF of each component 

for System Models I, II, and II, respectively, considering the coefficients of 

correlation among the variables from monitored data. For model I, the exceedance 

probability for the system depends mainly on the girder 3 as shown in Figure 4.16(a). 

Therefore, as expected, the NRIF of the girder 3 has the highest NRIF (see Figure 

4.17(a)). However, since the variables associated with the specified component are 

partially correlated with the variables associated with other components (see Table 

4.5), it may be difficult to obtain NRIF of each component directly from comparison 

between exceedance probabilities of the components and the systems in Figures 

4.16(a) and 16(b). For instance, if the variables involved in computing the 

exceedance probability of girder 4 are independent of the variables associated with 

other components, the NRIF of girder 4 in a series system will be the smallest since 

the exceedance probability for girder 4 has the smallest value over time. However, in 

this case study considering correlations among variables, the NRIF of girder 4 is not 
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the smallest. This is because the variables associated with girder 4 have relatively 

high correlation with girder 3 (see Table 4.5) which has the highest NRIF among 

four girders. From these results, it is clear that the NRIFs of individual components 

are dependent on the system modeling and the correlations among variables. Thus, it 

is important to define a realistic system model and to obtain accurate coefficients of 

correlation. 

 

Pareto optimum solutions 

The bi-objective optimization problem consists of two conflicting objective as 

maximization the expected average availability in Equation (4.15) associated with 

Case O1 (see Table 4.1) and minimization of the total monitoring cost in Equation 

(4.16). The design variables are monitoring duration tmd and prediction duration t. 

The design variables t and tmd have to be in the interval 30 days and 700 days. It is 

assumed that monitoring cost is $10,000 during 80 days. Through the GA process, 

1,000 Pareto solutions are obtained as shown in Figure 4.18(a) without considering 

the discount rate of during the prescribed time period of 730 days (i.e., 2 years). The 

maximum number of generations used was 100. Table 4.6 provides optimal values of 

design variables, and optimal total monitoring costs for different values of expected 

average availability varying from 0.1 to 0.9 for the period of 730 days. The 

monitoring plan with the expected average availability of 0.2 (Solution A in Figures 

4.18(a) and 18(b)) requires a monitoring cost of $15,625 during 2 years. This 
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monitoring plan consists of the monitoring period of 125 days and the 

non-monitoring period of 605 days. For the expected average availability of 0.8 

(Solution D in Figures 4.18(a) and 18(b)), the associated total monitoring cost is 

$62,375 during 2 years. In this case, the monitoring plan has monitoring periods of 

499 days and non-monitoring periods of 231 days. According to the importance of 

the monitored structural member and/or the state of financial resources, the structural 

managers can select the appropriate monitoring plan among these Pareto solutions.  

 

Effective monitoring plan for structural system 

If the total monitoring cost for the system CMON,system = $30,000 is assigned for the 

first two years, the total monitoring cost CMON,i of each component can be obtained 

using Equation (4.17). For example, during the first two years, the mean of NRIF of 

girder 1, E(NRIF1), of Model II is 0.1871 (see Figure 4.17(b)), and the allocated 

monitoring cost for girder 1 CMON,1 during the first two years becomes 0.187 × 

$30,000 = $5,610. Using this cost, the associated expected average availability, 

monitoring duration tmd and prediction duration t can be obtained from the Pareto 

optimal solution set for the prescribed time period of two years as shown in Figure 

4.18(a), if the discount rate during this prescribed time is not considered. As a result, 

during the first two years, the expected average availability is 0.066, and tmd and t are 

45 days and 685 days, respectively. If the total monitoring cost for the system 

CMON,system = $30,000 is assigned every two years, the monitoring plans for girder 1 
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can be obtained until the target time (i.e., 20 years) by using the aforementioned 

procedure. Figures 4.19(a), 19(b) and 19(c) show monitoring cost, expected average 

availability, and ratio of tmd to t of Model II, respectively. Figures 4.20(a), 20(b) and 

20(c) show the monitoring costs, the expected average availability of monitoring 

data for prediction, and the ratio of tmd to t of the four girders in Model II, 

respectively, when CMON,system = $60,000 is allocated uniformly every four years and 

the discount rate is not considered. The mean of NRIF of girder 1, E(NRIF1), of 

Model II during the first four years is 0.2208 (see Figure 4.17(b)), and CMON,1 

becomes 0.2208 × $60,000 = $13,250. Based on the Pareto optimal solution set in 

Figure 4.18(a), the associated monitoring plan of girder 1 during the first four years 

can be determined as tmd = 53 days and t = 677 days. The optimal monitoring plans 

of four girders are updated every four years as shown in Figures 4.21(a) to 21(e) 

during the target time of 20 years. The optimal monitoring plan of girder 2 is 

associated with tmd = 84 days and t = 646 days during the first four years (see Figure 

4.21(a)) with monitoring cost of $21,000 (see Figure 4.20(a)) and expected average 

availability of 0.129 (see Figure 4.20(b)). It should be noted that the NRIFs of 

individual components are highly dependent on the system modeling. Therefore, the 

system modeling has a significant effect on the monitoring planning of individual 

components. 
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4.5.4 Optimum Solutions from Decision Analysis 

The expected monetary value (EMV) associated with various monitoring plans can 

be obtained by using Equation (4.23) with Cmon,o = $10,000 and tmd,o = 80 days. 

Figures 4.22(a) and 22(b) show the relation between the EMV per day and the ratio 

rmd of the monitoring duration tmd to the prediction duration t. From these figures, it 

is clear that as the potential monitoring loss Closs increases, the optimum monitoring 

plan requires a larger ratio of monitoring duration to prediction duration. Therefore, 

structures with very high potential loss need long-term monitoring. In this case, the 

continuous monitoring program is the optimal plan. If structures have a moderate 

potential loss (e.g., Closs = $100/day, see Figure 4.22(b)), the optimal monitoring plan 

will correspond to the ratio of monitoring duration to prediction duration with the 

maximum EMV (or minimum monetary loss). For example, $100/day of the 

potential loss value yields the optimum design value of rmd = 0.63 and the maximum 

EMV (or minimum monetary loss) = -$98.2/day as shown in Figure 4.22(b). 

 

4.6 Conclusions 

The main objective of SHM is to provide reliable information to structure managers 

in order to implement cost-effective lifetime maintenance planning. To obtain the 

maximum benefit from SHM, an optimal monitoring plan is needed by balancing the 

availability of monitoring and monitoring cost over the service of structures. In this 
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chapter, this optimization under uncertainty has been formulated as a bi-objective 

problem: maximization of the availability of monitoring data for structural 

performance prediction and minimization of the cumulative monitoring cost. Based 

on this formulation and reliability importance assessment of structural components, 

the approach for determination of optimal monitoring planning of structural systems 

was extended. Additionally, as an alternative approach, decision analysis theory has 

been used based on the minimum monetary loss criterion. The following conclusions 

can be drawn:  

1. The optimum monitoring plan is affected by the discount rate of money and the 

criterion for using monitoring data for prediction. A higher discount rate of 

money leads to an optimal monitoring plan with shorter monitoring duration and 

shorter time intervals between monitorings. The criterion for using monitoring 

data for prediction is dependent on the number of exceedances allowed for the 

largest positive and/or negative residual in a prescribed time interval.  

2. In order to apply the proposed approach, structural managers have to assign the 

threshold for the expected average availability of monitoring data according to 

the importance and state of structural deterioration. In the proposed approach, 

total monitoring cost for the structural system is allocated to individual 

components according to the NRIF. These allocated monitoring costs of 

individual components are used in Pareto optimization to find the monitoring 

schedules. The NRIF of an individual component can be assessed and predicted 
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based on SHM data. However, the NRIF is sensitive to the system modeling 

(e.g., series, parallel, type of series-parallel), and to the correlation among the 

variables involved in the state functions of a structural system. Therefore, the 

system should be modeled appropriately, and the correlation structure should be 

considered based on monitoring data or expert opinion.  

3. In order to predict the structural performance, the time-dependent function 

considering load effects was used. This function is mainly dependent on the 

initial monitoring data. Therefore, the initial monitoring data should be reliable. 

Moreover, since the time-dependent function considers only the live load effect, 

the prediction may be effective only for short time periods.  

4. The optimum monitoring planning resulting from the proposed approach may be 

used as an initial monitoring strategy. This planning has to be updated 

considering new information obtained after each monitoring. Further research is 

necessary to develop the updating procedure after each monitoring.  

5. As an illustrative example, the proposed approach was applied to an existing 

bridge. However, it can also be applied to any monitored structure by 

formulating appropriate time-dependent state functions and developing a 

representative system model. 

6. The potential loss from unavailability of the monitoring for prediction has a 

significant effect on EMV.  
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Table 4.2 Objective and design variable values associated with various cases as 
indicated in Table 4.1: discount rate of money = 0%/day  

Objectives   Design variables 
Case 

 E A  MONC ($) t (days) tmd (days)

0.2 151,875 2,035 405

0.4 283,125 1,680 755

0.6 431,250 1,285 1,150
O1 

0.8 624,375 770 1,665

0.2 82,500 2,215 220

0.4 155,625 2,020 415

0.6 236,250 1,805 630
O2 

0.8 354,375 1,490 945

0.2 58,125 2,285 155

0.4 108,750 2,155 290

0.6 163,125 2,000 435
O3 

0.8 240,000 1,795 640

0.2 264,375 1,735 705

0.4 431,250 1,285 1,150

0.6 583,125 880 1,555
B1 

0.8 740,625 460 1,975

0.2 125,625 2,100 335

0.4 223,125 1,840 595

0.6 320,625 1,580 855
B2 

0.8 448,125 1,240 1,195

0.2 80,625 2,220 215

0.4 148,125 2,040 395

0.6 215,625 1,860 575
B3 

0.8 301,875 1,630 805
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Table 4.3 Objective and design variable values associated with various cases as 
indicated in Table 4.1: discount rate of money = 0.016 %/day 

Objectives   Design variables 
Case 

 E A  MONC ($) t (days) tmd (days)

0.2 93,813 320 65

0.4 170,044 145 65

0.6 256,969 90 80
O1 

0.8 376,889 60 130

0.2 52,553 500 50

0.4 93,912 245 50

0.6 143,645 170 60
O2 

0.8 213,591 110 70

0.2 37,422 890 60

0.4 67,049 405 55

0.6 98,874 255 55
O3 

0.8 146,158 180 65

0.2 159,743 160 65

0.4 258,588 130 115

0.6 350,900 65 115
B1 

0.8 449,895 50 215

0.2 77,387 375 60

0.4 135,823 230 75

0.6 194,741 185 100
B2 

0.8 271,646 155 150

0.2 49,985 515 50

0.4 90,547 310 60

0.6 130,143 195 60
B3 

0.8 181,097 205 100
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Table 4.6 Pareto optimal solutions for prescribed time period of two years without 
discount rate 

Expected average 

availability  

E(Ā) 

Monitoring  
duration 

tmd (days) 

Prediction  
duration 
t (days) 

Total  
monitoring cost 

CMON ($) 

0.1 66 664 8,250 

0.2 125 605 15,625 

0.3 173 557 21,625 

0.4 226 504 28,250 

0.5 281 449 35,125 

0.6 344 386 43,000 

0.7 415 315 51,875 

0.8 499 231 62,375 

0.9 601 129 72,125 
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Figure 4.1 (a) Residuals between values from prediction model and monitoring 
data; and (b) the PDF of the residuals, X, and the PDF of the maximum residual, 
Ymax 
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Figure 4.2 Comparison between availability of system and availability of 
monitoring data 
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Figure 4.3 Timeline of monitoring and prediction at regular time intervals 
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Figure 4.4 The relation between the ratio of monitoring duration to prediction 
duration and the expected average availability of monitoring data; (a) Cases O1, O2 
and O3; and (b) Cases B1, B2 and B3 
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1. TIME-DEPENDENT NRIF 2. PARETO SOLUTION SET 
OF BI-OBJECTIVE OPTIMIZATION

1-1. Formulate the time-dependent state 
function in Eqs. (3.13) and (3.16) of 
individual components based on given 
monitored data 

1-2. Develop the realistic series-parallel 
system model

1-3. Assess and predict the structural 
performance of components and the 
structural system

1-4. Assess and predict time-dependent 
NRIF using Eqs. (2.19) and (2.22)

2-1. Formulate the bi-objective optimization problem
• Design variables: monitoring duration

and prediction duration
• Maximization of availability of monitoring data 

(see Eq. (4.14))
• Minimization of monitoring cost

(see Eq. (4.16))

2-2 Find the Pareto-solution set

3. MONITORING SCHEDULE 
FOR STRUCTURAL SYSTEM

3-1. Allocate total monitoring cost during a 
prescribed period to each component according 
to NRIF as indicated in Eq. (4.17)

3-2. Determine the monitoring schedule during a 
prescribed period of each component from the 
Pareto-solution set

3-3.Repeat 3-1 and 3-2 for updating monitoring plan
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Figure 4.5 Schematic representation for establishing effective monitoring planning of 
a structural system. 
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Figure 4.6 Decision tree for monitoring plan 
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Figure 4.7 (a) Linear regression model based using 800 monitored data from the 
sensor CH 4; (b) normal probability paper for the residuals; and (c) PDF of the 
residuals and its extremal asymptotic distributions 
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Figure 4.8 Prediction duration versus expected average availability of monitoring 
data for 80 monitoring days: (a) Cases O1, O2, and O3; and (b) Cases B1, B2, and 
B3 
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Figure 4.9 (a) Pareto solution sets of the bi-objective problem without discount rate 
for Cases O1, O2 and O3; (b) design space with Solutions A1, B1, C1 and D1; (c) 
monitoring plans of Solutions A1, B1, C1 and D1; (d) design space with Solutions 
D1, D2 and D3; and (e) monitoring plans for Solutions D1, D2 and D3 
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Figure 4.9 Pareto solution sets of the bi-objective problem without discount rate for 
Cases O1, O2 and O3; (b) design space with Solutions A1, B1, C1 and D1; (c) 
monitoring plans of Solutions A1, B1, C1 and D1; (d) design space with Solutions 
D1, D2 and D3; and (e) monitoring plans for Solutions D1, D2 and D3 (continued) 

 



www.manaraa.com

 145

 
 

(d)

CASE O3

CASE O1

NO DISCOUNT RATE

D1

D2

D3
CASE O2

0 0.2 0.4 0.6 0.8 1

EXPECTED AVERAGE AVAILABILITY

0.0

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

1.2x10
6

T
O

T
A

L 
M

O
N

IT
O

R
IN

G
 C

O
S

T
 (

U
S

 $
)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

P
R

E
D

IC
T

IO
N

 D
U

R
A

T
IO

N
, t

 (
D

A
Y

S
)

D1

D2

D3

DESIGN SPACE

MONITORING DURATION, tmd (DAYS)

 
 
 

(e) E(A)=0.8

0 2000 4000 6000

TIME (DAYS)
7300

D2

D3

$354,375

TOTAL COST

$240,000

MONITORING DURATION, tmd

PREDICTION DURATION, t

t =1490 tmd=945

t =1795 tmd=640

D1
$624,375

tmd=1665t =770

 
 

 
Figure 4.9 Pareto solution sets of the bi-objective problem without discount rate for 
Cases O1, O2 and O3; (b) design space with Solutions A1, B1, C1 and D1; (c) 
monitoring plans of Solutions A1, B1, C1 and D1; (d) design space with Solutions 
D1, D2 and D3; and (e) monitoring plans for Solutions D1, D2 and D3 (continued) 
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Figure 4.10 (a) Pareto solution sets of the bi-objective problem with discount rate 
rdis = 0.016%/day for Cases O1, O2 and O3; (b) design space with Solutions E1, F1, 
G1 and H1; (c) monitoring plans for Solutions E1, F1, G1 and H1; (d) design space 
with Solutions H1, H2 and H3; and (e) monitoring plans for Solutions H1, H2 and 
H3 
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Figure 4.10 (a) Pareto solution sets of the bi-objective problem with discount rate 
rdis = 0.016%/day for Cases O1, O2 and O3; (b) design space with Solutions E1, F1, 
G1 and H1; (c) monitoring plans for Solutions E1, F1, G1 and H1; (d) design space 
with Solutions H1, H2 and H3; and (e) monitoring plans for Solutions H1, H2 and 
H3 (continued) 
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Figure 4.10 (a) Pareto solution sets of the bi-objective problem with discount rate 
rdis = 0.016%/day for Cases O1, O2 and O3; (b) design space with Solutions E1, F1, 
G1 and H1; (c) monitoring plans for Solutions E1, F1, G1 and H1; (d) design space 
with Solutions H1, H2 and H3; and (e) monitoring plans for Solutions H1, H2 and 
H3 (continued) 
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Figure 4.11 Pareto solution sets of multi-objective problem for Case B1, B2 and B3; 
(a) without discount rate of money; and (b) with discount rate of money rdis = 
0.016% / day 
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Figure 4.13 Histograms and the best-fit PDFs of monitored data from (a) CH 20; (b)
CH 19; (c) CH 18; and (d) CH 17 under the right lane loading  
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Figure 4.13 Histograms and the best-fit PDFs of monitored data from (a) CH 20; (b)
CH 19; (c) CH 18; and (d) CH 17 under the right lane loading (continued) 
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Figure 4.14 Histograms and the best-fit PDFs of monitored data from (a) CH 20; (b)
CH 19; (c) CH 18; and (d) CH 17 under the left lane loading  
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Figure 4.14 Histograms and the best-fit PDFs of monitored data from (a) CH 20; (b)
CH 19; (c) CH 18; and (d) CH 17 under the left lane loading (continued) 



www.manaraa.com

 155

 
 

(a) GIRDER 1 GIRDER 2 GIRDER 3 GIRDER 4
 

 
 
 
 
 
 

(b) 
GIRDER 1

GIRDER 2

GIRDER 1

GIRDER 3

GIRDER 1

GIRDER 4

GIRDER 2

GIRDER 3

GIRDER 2

GIRDER 4

GIRDER 3

GIRDER 4
 

 
 
 
 
 
 

(c) GIRDER 1

GIRDER 2

GIRDER 3

GIRDER 1

GIRDER 2

GIRDER 4

GIRDER 2

GIRDER 3

GIRDER 4

GIRDER 1

GIRDER 3

GIRDER 4

 
 
 
 

Figure 4.15 (a) System model I; (b) System Model II; and (c) System Model III 
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Figure 4.16 Exceedance probabilities associated with (a) girders 1, 2, 3, and 4; and 
(b) System Models I, II, and III over time 
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Figure 4.17 Normalized reliability importance factors (NRIFs) of girders 1 to 4 
associated with (a) System Model I; (b) System Model II; and (c) System Model III 
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Figure 4.18 (a) Pareto solution set associated with a prescribed time period of two 
years without considering the discount rate; and (b) monitoring plan associated with 
Solutions A, B, C, and D in (a) 
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Figure 4.19 Monitoring cost of $ 30,000 allocated every two years for system model 
II: (a) monitoring cost; (b) expected average availability; and (c) ratio of the 
monitoring duration to the prediction duration of girders 1, 2, 3, and 4 
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Figure 4.20 Monitoring cost of $ 60,000 allocated every four years for system 
model II: (a) monitoring cost; (b) expected average availability; and (c) ratio of the 
monitoring duration to the prediction duration of girders 1, 2, 3, and 4 
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Figure 4.21 Optimum monitoring planning associated with Figure 4.20: (a) 0–4 
years; (b) 4–8 years; (c) 8–12 years; (d) 12–16 years; and (e) 16–20 years with a 
four-year updating period  
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Figure 4.21 Optimum monitoring planning associated with Figure 4.20: (a) 0–4 
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Figure 4.22 Expected monetary value per day versus ratio of the monitoring 
duration to the prediction duration; (a) for Closs = $50 / day, and Closs = $500 / day; 
and (b) for Closs = $100 / day 
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CHAPTER 5 

 

 INSPECTION AND MONITORING PLANNING FOR 

MINIMIZING DAMAGE DETECTION DELAY 

 

5.1 Introduction 

The performance of engineering structures including reinforced concrete (RC) 

structures and steel structures over their service life can deteriorate under various 

mechanical and/or environmental processes. Among the processes to induce 

deterioration of RC structures, corrosion of reinforcement in concrete was 

considered as predominant [Chaker 1992, NCHRP 2005]. A significant amount of 

effort has been made to predict the propagation of corrosion damage. However, since 

the mechanism of RC degradation is highly dependent on the environment and 

concrete material properties are uncertain, it is still not possible to accurately predict 

structural performance of deteriorating RC structures. One of main deterioration 

processes of steel structures is fatigue defined as the process of initiation and growth 

of cracks under repetitive loads. The fatigue evolution process is generally affected 

by uncertainties associated with the location and size of initial crack, stress range 

near the initial crack, number of cycles, and material and geometric properties 

[Fisher et al. 1998]. For this reason, a probabilistic approach is necessary to predict 

damage occurrence/propagation due to corrosion or fatigue for inspection and 

monitoring planning. [Madsen and Sørensen 1990, Madsen et al. 1991, Soares and 

Garbatov 1996a and 1996b, Ayyub et al. 2002, Moan 2005, Kwon and Frangopol 
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2010] 

Several studies focusing on effects of corrosion [Frangopol et al. 1997a, Enright 

and Frangopol 1998a and 1998b, Stewart 2004, Li et al. 2005] have been conducted 

on service-life prediction of deteriorating concrete bridges under uncertainty. Based 

on these studies, lifetime optimization methodologies for planning repair strategies 

of corroded RC structures were developed [Frangopol et al. 1998b, Enright and 

Frangopol 1999b, Estes and Frangopol 1999 and 2001]. For steel structures 

including ship and bridge structures subjected to fatigue, several probabilistic 

approaches have also been developed and applied [Madsen and Sørensen 1990, 

Madsen et al. 1991, Ayyub et al. 2002, Moan 2005, Kwon and Frangopol 2010]. 

These studies were extended into cost-effective inspection and maintenance planning 

considering probability of fatigue damage detection [Garbatov and Soares 2001, 

Chung et al. 2006].  

In general, maintenance actions will follow inspection if structural damage is 

detected [Farhey 2005]. If the damage is not detected, no maintenance will be 

applied. Higher quality of inspection can lead to effective and timely maintenance 

actions which will prevent unserviceability or collapse and extend the service life of 

a structure cost-effectively. For this reason, research towards technical development 

of inspection methods has been performed actively. However, even though high 

quality inspection methods can be applied, damage cannot be always detected on 

time. This is due to the fact that there are still uncertainties related to damage 
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occurrence/propagation and inspection methods are not perfect. Therefore, in order 

to detect damage on time, inspection timing and number and quality of inspections 

should be considered simultaneously in a rational probabilistic framework.  

In this chapter, such a framework is proposed to establish an optimum inspection 

and monitoring plan. The objective of this optimization is to minimize the expected 

damage detection delay defined as the expected time-lapse since a structure has been 

damaged until the damage is detected by inspection. In this formulation, 

uncertainties associated with prediction of damage occurrence / propagation in an 

engineering structure are considered, and the detectability function is used to 

quantify the quality of inspection method according to the degree of damage (e.g., 

corroded reinforcement area, crack size). This proposed approach is further used for 

optimum monitoring planning. The effect of additional information on optimal 

solutions is studied using Bayesian updating. Furthermore, increase of number of 

inspections and improvement of inspection quality can lead to reduction of damage 

detection delay, but additional cost is required. In order to consider the conflicting 

criteria of minimization of both expected damage detection delay and inspection cost, 

a bi-objective optimization problem was solved. The well-balanced inspection 

planning from this bi-objective optimization problem provides optimum inspection 

types and times considering a single-type or multi-types of inspections. This 

bi-objective optimization formulation is extended to establish an optimum combined 

inspection / monitoring planning. The solution provides the sequence of inspections 
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and monitorings (e.g., inspection followed by monitoring, monitoring followed by 

inspection) as well as inspection and/or monitoring times, and inspection quality, and 

monitoring durations. The proposed approach in this chapter is applied to existing 

highway bridges subjected to corrosion or fatigue, and ship hull structures subjected 

to fatigue. 

 

5.2 Damage Occurrence and Propagation 

The most common causes of resistance reduction of concrete and steel structures are 

corrosion and fatigue. Among the factors affecting the deterioration of concrete 

structures, corrosion is the main factor which may develop into crack and spalling as 

well as loss of bond between concrete and reinforcing steel, and loss of steel section. 

[Zhang and Lounis 2006]. The general deterioration process due to corrosion has six 

steps [Thoft-Christensen 2003]: (a) penetration of chloride ions into the concrete 

structure; (b) corrosion initiation in the reinforcement; (c) evolution of corrosion of 

the reinforcement; (d) crack initiation in the concrete; (e) crack propagation in the 

concrete; and (f) spalling. Spalling may cause additional cracks in the concrete 

through which reinforcement of the concrete structure is exposed directly to 

aggressive environments [Bertolini et al. 2004]. The causes of steel corrosion 

process in concrete are mainly related to chloride penetration into concrete and 

concrete carbonation [Roberge 1999]. This study considers the penetration of 

chloride ions into concrete as the primary cause of corrosion process.  
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Fatigue in metals can be defined as the process of initiation and growth of 

cracks under repetitive stresses. If crack growth is allowed to develop, failure of the 

steel member can occur and this process can take place at stress levels that are less 

than levels at which failure occurs under static loading condition. In general, the 

fatigue life of a fabricated steel structure may be determined by three factors as (a) 

number of loading cycles; (b) stress range at the location of a steel member; and (c) 

type of detail of a steel member [Fisher et al. 1998]. 

 

5.2.1 Corrosion Damage Occurrence and Propagation 

The deterioration process due to corrosion generally consists of the following two 

steps: corrosion initiation/propagation [Tuutti 1982, Al-Tayyib et al. 1988, Dhir et al. 

1989, Stewart and Rosowsky 1998].  

 

Corrosion initiation 

The time for the concentration of chloride at the rebar surface to exceed a threshold 

limit can be referred to as the corrosion initiation time [Arora et al. 1997, Zhang and 

Lounis 2006]. In order to predict time-dependent chloride concentration Cch(x, t) 

(g/mm3) at depth x (mm) from the concrete surface and time t (years), Fick’s second 

law can be used as 

( , ) ( , )ch ch
ch

C x t C x t
D

t x x

        
 (5.1)
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where Dch (mm2/year) is the effective chloride diffusion coefficient. If Dch and the 

surface chloride concentration Cch,o (g/mm3) are constant over time, and Cch = 0 for 

time t = 0, the solution of Equation (5.1) is [Crank 1975] 

1
2

ch ch,o

ch

x
C ( x,t ) C erf

D t

  
       

 (5.2)

where erf denotes the standard error function. Assuming that corrosion of 

reinforcement starts when the concentration of chloride reaches the threshold limit 

Cch,th (g/mm3) of reinforcement, the time to corrosion initiation Tcorr (years) is [Rafiq 

2005] 

2

2

14

corr

ch ,th
ch

ch,o

x
T

C
D erfc

C



  
  
   

 
(5.3)

where erfc = complementary error function. It should be noted that the effective 

chloride diffusion coefficient Dch and the surface chloride concentration Cch,o can be 

time-dependent parameters, and initial chloride concentration Cch at time t = 0 may 

not be equal to 0 [Maage et al. 1996 and 1999, NCHRP 2006].  

 

Corrosion propagation 

The evolution of corrosion of the reinforcement can be represented by using the 

general (also called uniform) and pitting corrosion models [Val and Melchers 1997, 

Jemajtis 1998, Marsh and Frangopol 2008]. The general corrosion model is based on 

the assumption that the entire cross-sectional area of reinforcement is reduced 
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uniformly. The total reinforcement area Ast(t) at time t (years) is [Enright and 

Frangopol 1998a, Marsh and Frangopol 2008] 

 

2
0

2

0

4

4

s st

st

s st corr corr

n d

A ( t )
n d r t T

 

 

     


 

0 corr

corr

for t T

for t T

 



 (5.4)

where ns = number of steel bars experiencing active corrosion, dst0 = initial diameter 

of reinforcement (mm), and rcorr = rate of corrosion (mm/year).  

The rate of corrosion rcorr is generally obtained by considering the overall 

reinforcement surface. However, corrosion can be highly localized, and the 

maximum pit depth is larger than the average pit depth based on uniform corrosion 

model [Gonzalez et al. 1995]. Stewart (2004) showed that pitting corrosion can lead 

to a larger probability of failure than uniform corrosion. The maximum penetration 

of pitting PT(t) at time t is expressed by [Val and Melchers 1997] 

PT(t) = rcorrRpit(t – Tcorr) for t > Tcorr (5.5)

where Rpit = ratio of maximum pit depth to average pit depth. Rpit generally lies in 

the interval between 4 and 8 [Gonzalez et al. 1995]. Based on a hemispherical form 

of pits, the remaining cross sectional area Ast(t) of reinforcement can be estimated as 

[Val and Melchers 1997] 

 
2

0
1 24

s st
st

n d
A t A A  


 for   02

2
std

PT t   (5.6a)

  1 2stA t A A   for  0
0

2

2
st

st

d
PT t d   (5.6b)
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  0stA t   for   0stPT t d  (5.6c)

where 

 22

0 0
1 1

02 2 2
s st st

st

PT tn d d
A a

d

      
   

  and    2
2

2 2
02

s

st

PT tn
A PT t a

d

 
  

  
  (5.7a)

   
0 52

0

2 1

.

st

PT t
a PT t

d

  
    
   

 (5.7b)
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0
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st
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arcsin
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  and 

 2 2
2

a
arcsin

PT t

 
   

 
  (5.7c)

where ns = number of steel bars experiencing active corrosion, and dst0 = initial 

diameter of reinforcement (mm).  

 

5.2.2 Fatigue Damage Occurrence and Propagation 

Fatigue is the process of initiation and growth of cracks under repetitive loads. The 

crack may be pre-existing from fabrication, and be initiated by fatigue and/or 

corrosion. The crack growth can be affected by the location and length of initial crack, 

stress range near the initial crack, number of cycles associated with the stress range, 

material and geometric properties of a structure with crack damage [Fisher et al. 

1998]. All these factors have complex relation to each other. Due to this complexity of 

the fatigue fracture process, it is difficult to predict crack length accurately. So far 

several empirical and phenomenological-based crack propagation models have been 

proposed to predict fatigue life [Fatemi and Yang 1998, Schijve 2003, Mohanty et al. 

2009]. In order to predict crack length, Paris’ equation based on linear elastic fracture 
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mechanics has been generally used. The ratio of the crack size increment to stress 

cycle increment is described by the following equation [Paris and Erdogan 1963] 

cycle

da

dN
 = C (K)m for K > Kthr (5.8)

where a = crack size; Ncycle = cumulative number of cycles; K = stress intensity 

factor; and Kthr = threshold of stress intensity factor. C and m are material 

parameters. The stress intensity factor K is [Irwin 1958] 

K = SsrY(a) a  (5.9)

where Ssr = stress range, and Y(a) = geometry function. From Equation (5.8) and 

(5.9), the cumulative number of cycles Ncycle associated with crack size aN is 

obtained as [Fisher 1984] 

 
 

 

1 1

( )

N

o

a

cycle m ma
sr

N da
C S Y a a

 
    (5.10)

where ao= initial crack size. Furthermore, the time t (years) associated with the 

occurrence of the crack size aN is predicted by considering the annual number of 

cycles Nan and annual increase rate of number of cycles rcycle as [Madsen et al. 1985 

and 1987] 

 

 

1 1
[1 (1 ) ]
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cyclem ma
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N C S Y a a
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for rcycle > 0 (5.11a)

 

 

1 1

( ( ) )

N

o

a

m ma
an re

t da
N C S Y a a

 
     for rcycle = 0 (5.11b)

If the geometry function is constant (i.e., Y(a) = Y), the crack length after N cycles aN 
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can be obtained as 

2
( )(2 ) 2 2 2

2
[ ( ) ]

2
m / m m m/ m

N o sr cycle
m

a a C S Y N 


        for m  2 (5.12a)

[ ]m m
N o sr cyclea a exp C S Y N       for m = 2 (5.12b)

 

5.3 Uncertainty Associated with Inspection 

Damage detection using a particular inspection method and interpretation of 

inspection data are associated with large uncertainties [Mori and Ellingwood 1994b, 

Frangopol et al. 1997b, Enright and Frangopol 1999a]. These uncertainties include 

the randomness of damage occurrence/propagation and the imperfection of 

inspection method. There are two events when inspection result is “no damage”: (a) 

no damage occurrence; (b) damage occurred but is not detected. The later event is 

associated with uncertainties in the inspection method. In order to treat the 

uncertainty of inspection in a rational way, uncertainties associated with both 

damage prediction and quality of inspection should be considered.  

 

5.3.1 Probability of corrosion damage detection 

Variables associated with prediction of structural performance are affected by 

uncertainties and, therefore, they should be treated as random variables. For example, 

in order to predict the corrosion initiation time under uncertainty, randomness of the 

associated four coefficients in Equation (5.3) (i.e., effective chloride diffusion 
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coefficient Dch, surface chloride concentration Cch,o, depth x from the concrete 

surface, and threshold limit Cch,th) should be considered. Enright and Frangopol 

(1998a) studied the relationship between the corrosion initiation time and these four 

parameters under uncertainty using parametric studies. They concluded that both the 

mean and standard deviation of the corrosion initiation time increase with an 

increase in the coefficients of variation (COVs) of these four parameters.  

The quality of inspection technique being used, the degree of damage, and the 

number and timing of inspections have an effect on the ability to detect damage. In 

order to quantify the quality of inspection method considering the degree of damage, 

a detectability function can be used. The detectability function  insp cP   is defined 

as the probability that corrosion damage is detected when the corrosion damage 

intensity at time t is c. This time-dependent corrosion damage intensity c for the 

uniform (or general) model indicated in Equation (5.4) is defined as [Frangopol et al. 

1997b] 

   
0

0

c corr corr

st

t r t T

d


  



 

0 corr

corr

for t T

for t T

 



 (5.13)

The localized corrosion damage intensity c at time t can be expressed as [Kim et al. 

2011]  

   
0

c
st

PT t
t

d
   (5.14)

Once corrosion initiates and propagates, damage intensity c increases from zero (i.e., 
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no damage) to one (full damage). The probability of corrosion damage detection 

 insp ,c cP  is [Frangopol et al. 1997b] 

0 5c c , .
insp ,c

c ,

P


   
    

 (5.15)

where () = standard normal CDF; 0 5c , .   corrosion damage intensity at which 

the inspection method has a 50% probability of damage detection; and 

c ,  standard deviation of the damage intensity 0 5c , . . An inspection method with a 

lower value of 0 5c , .  has a higher probability of detection. For instance, suppose 

that two inspection methods are used to detect the corrosion in a reinforcement with 

the degree of damage c = 0.03; the associated damage intensities at which the 

inspection method has a 50% probability of detection are 0.03 and 0.05, respectively, 

and c ,  0.1 0 5c , . . The detectability (i.e., probability of detection) of the inspection 

method associated with 0 5c , . = 0.03 will be 1 – 2.0610-11, and the probability of 

detection with 0 5c , . = 0.05 will be 0.5. The relation between the corrosion damage 

intensity c and the probability of corrosion damage detection is shown in Figure 

5.1(a). Therefore, 0 5c , .  can be used to quantify the quality of inspection. 

 

5.3.2 Probability of fatigue damage detection 

Probability of fatigue damage detection is defined as the conditional probability that 

the crack is detected by an inspection method, when the crack exists with a specific 

size [Chung et al. 2006]. The probability of fatigue damage detection depends on the 
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degree of fatigue damage (i.e., crack length or defect size) and quality of inspection. 

Packman et al. (1969), Berens and Hovey (1981), Madsen et al. (1991), Mori and 

Ellingwood (1994a), and Chung et al. (2006) investigated the relation between 

probability of detection and crack length (or defect size). The representative relations 

between probability of fatigue damage detection Pinsp,f and crack size a are: 

(a) Shifted exponential form [Packman et al. 1969] 

1 ( )min
insp , f

insp

a a
P exp


  


 for a > amin (5.16)

where amin = smallest detectable crack size, insp = characteristic parameter for 

inspection quality. The value of this parameter ranges from 0 to , and insp 

decreases with increasing the quality of inspection.  

(b) Log-logistic form [Berens and Hovey 1981] 

[ ( )]

1 [ ( )]
insp insp

insp , f
insp insp

exp ln a
P

exp ln a

  


   
 (5.17)

where insp and insp are statistical parameters. These parameters can be estimated 

using the maximum likelihood method for a specific inspection method [Chung et al. 

2006].  

(c) Normal cumulative distribution function (CDF) form [Frangopol et al. 1997b] 

0 5Φ( )f f , .
insp , f

f ,

P





 


 (5.18)

where () = standard normal CDF; f  = fatigue damage intensity; 0 5f , .   

fatigue damage intensity at which the inspection method has a probability of 
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detection of 0.5; and f ,  standard deviation of 0 5f , . . In this study, the normal 

CDF form in Equation (5.18) is used, and the coefficient of variation of 0 5f , .  is 

assumed 0.1 (i.e., 0 50 1f , f , ..   ). The fatigue damage intensity f  is defined as 

[Kim and Frangopol 2011c] 

0f   for a < amin (5.19a)

min
f

max min

a a

a a


 


 for amin  a < amax (5.19b)

1f   for a ≥ amax (5.19c)

where amin and amax are the minimum and maximum detectable crack sizes when the 

result of the detection is uncertain (i.e., if a < amin and a ≥ amax, the probability of 

detection is 0 and 1, respectively). For example, in case the minimum and maximum 

crack lengths for damage intensity are 1 mm and 50 mm, respectively (i.e., amin = 1 

mm, and amax = 50 mm), the relations between the crack length a and probability of 

fatigue damage detection Pinsp,f for three inspections with 0 5f , . = 0.01, 0.03, and 

0.05 is shown in Figure 5.1(b). For the inspection method with 0 5f , .  = 0.05, the 

probability of detection is 0.5 when the fatigue damage intensity is 0.05, and the 

associated crack length can be obtained as 3.45 mm, using Equation (5.19b); the 

crack length associated with probability of detection 0.999 is 4.21 mm as shown in 

Figure 5.1(b). If the inspection method with 0 5f , .  = 0.01 is used to detect the 

damage, the probability of damage detection will be 0.999, when the crack length is 

1.64 mm. 



www.manaraa.com

 178

 

5.4 Expected Damage Detection Delay 

5.4.1 Expected Damage Detection Delay when Inspection is Used 

Damage detection delay can be defined as the time-lapse since the structure has been 

damaged until the damage is identified by inspection [Huang and Chiu 1995]. If the 

time t for damage to occur is deterministic, and the probability of detection is certain, 

the damage detection delay tdelay will be  

tdelay = tinsp – t (5.20)

where tinsp denotes inspection time. However, inspection methods are not perfect. In 

order to formulate the damage detection delay considering probability of damage 

detection and number of inspections, an event tree model can be used. This model 

represents all the possible events having a particular consequence. There is a chance 

node associated with detection and no detection at every inspection. For instance, 

assuming that damage occurs in the time interval ts to te, and three inspections to 

detect damage are used, formulation of damage detection delay is based on the four 

cases according to damage occurrence time t as follows: (a) case 1: 1s insp ,t t t  ; (b) 

case 2: 1 2insp , insp ,t t t  ; (c) case 3: 2 3insp , insp ,t t t  ; and (d) case 4: 3insp , et t t  , 

where ts and te are the times representing the lower and upper bounds of damage 

occurrence, respectively, and tinsp,i is ith inspection time. Figure 5.2 illustrates event 

trees and damage detection delays associated with possible branches for these four 

cases. The gray circle node in Figure 5.2 indicates a chance node at every inspection 
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where there are two events (i.e., detection and no detection). For case 1 (see Figure 

5.2(a)), there are four branches. Branch 1 represents the event of damage detection at 

the first inspection. The associated damage detection delay and probability are 

1insp ,t t  and Pinsp,1, respectively. If the damage is not detected until the third 

inspection, and is detected at time tinsp,e, the associated damage detection delay and 

probability will be insp ,et t  and (1 − Pinsp,1)  (1 − Pinsp,2)  (1 − Pinsp,3), respectively 

(see branch 4 in Figure 5.2(a)). Therefore, considering the damage detection delays 

and their probabilities associated with four possible branches, the expected damage 

detection delays for cases 1, 2, 3, and 4 are  

1 1 1

2 1 2

3 1 2 3

1 2 3

( ) ( )

( )[(1 ) ]

( )[(1 )(1 ) ]

( )[(1 )(1 )(1 )]

delay case, insp , insp ,

insp , insp , insp ,

insp , insp , insp , insp ,

insp ,e insp , insp , insp ,

E t t t P

t t P P

t t P P P

t t P P P

  

   

    

    

 for 1s insp ,t t t   (5.21a)
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( ) ( )

( )[(1 ) ]

( ) (1 )(1 )

delay case, insp , insp ,

insp , insp , insp ,

insp ,e insp , insp ,

E t t t P

t t P P

t t P P

  

   

     

 for 1 2insp , insp ,t t t   (5.21b)

3 3 3 3( ) ( ) ( )(1 )delay case, insp , insp , insp ,e insp ,E t t t P t t P       for 2 3insp , insp ,t t t   (5.21c)

4 3( ) ( )(1 )delay case, insp ,e insp ,E t t t P    for 3insp , et t t   (5.21d)

In Equation (5.21), the expected damage detection delay for case i is denoted as 

E(tdelay) case,i.  

When the time t for damage to occur is a continuous random variable described 

by the probability density function (PDF) fT(t) as shown in Figure 5.2, the expected 
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damage detection delay E(tdelay) for ninsp inspections is [Kim and Frangopol 2011b 

and 2011c] 

1

1

1

( ) { [ ( ) ( )] }
insp

insp ,i

insp ,i

n
t

delay delay case,i T
t

i

E t E t f t dt






    (5.22)

where ( )delay case,iE t = expected damage detection delay when 1insp ,i insp ,it t t   . The 

time tinsp,0 for i = 1 and tinsp,n+1 for i = ninsp+1 in Equation (5.22) are ts and te, 

respectively. Based on the PDF of damage occurrence time fT(t), ts and te (i.e., lower 

and upper bounds of damage occurrence, respectively) are defined as [Kim and 

Frangopol 2011b] 

1(Φ( ))s Tt F u   (5.23a)

1(Φ( ))e Tt F u  (5.23b)

where 1( )TF   = the inverse CDF of the damage occurrence time t, and u > 0. If, for 

example, the time t for damage to occur is assumed lognormally distributed with the 

mean of 10 years and the standard deviation of 2 years, and u is assumed to be 3.0, ts 

and te are 5.41 and 17.76 years, respectively, using Equation (5.23). The probability 

that the damage will occur before 5.41 and 17.76 years is 0.0013 and 0.9987, 

respectively. The value of u is fixed at 3.0 herein. 

 

5.4.2 Expected Damage Detection Delay when Monitoring is Used 

A properly installed structural health monitoring (SHM) system can provide more 

accurate information about the actual performance of a structure. The quality of the 
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information to assess and predict the structural performance can vary widely 

according to the monitoring duration, the type of data collected, the location of 

sensors, and the number of sensors installed. Under assumptions that the 

detectability during monitoring duration mdt  is perfect, and only one monitoring is 

applied, the expected detection delay  delayE t  can be formulated based on 

Equation (5.22) as [Kim and Frangopol 2011b] 

         1

1
1

mon , e

s mon , md

t t

delay mon, T insp ,e Tt t t
E t t t f t dt t t f t dt


        (5.24)

If the damage occurs before monitoring starting time tmon,1, the detection delay will 

be tmon,1 – t. It is assumed that there will be no detection delay, if the damage occurs 

during monitoring period (i.e., from tmon,1 to tmon,1 + tmd). In addition, if the damage 

occurs after monitoring period (i.e., tmon,1 + tmd ≤ t ≤ te), damage detection will be 

delayed until the time tinsp,e. If monitoring is applied nmon times with the same 

duration tmd, the expected damage detection delay is [Kim and Frangopol 2011b] 

1
1

( ) ( ( ) ( ) ) + ( ) ( )
mon

mon ,i e

mon ,i md mon ,n mdmon

n t t

delay mon,i T insp ,e T
t t t t

i

E t t t f t dt t t f t dt
  



        (5.25)

where tmon,i = the ith monitoring starting time. tmon,0 + tmd for i = 1 is associated with 

the lower bound of damage occurrence time ts of Equation (5.23a).  

 

5.4.3 Expected Damage Detection Delay when Combined Inspection / Monitoring is 

Used 

When combined inspection / monitoring is used to detect damage, the expected 
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damage detection delay E (tdelay) can be formulated using Equations (5.22) and (5.25). 

For instance, if one-time inspection and monitoring are used, and the inspection is 

applied before monitoring (i.e., tmon,1 > tinsp,1) as shown in Figure 5.3, there will be 

four possible cases according to damage occurrence time: (a) case1: ts  t < tinsp,1; (b) 

case 2: tinsp,1  t < tmon,1; (c) case 3: tmon,1  t < tmon,1 + tmd; (d) case 4: tmon,1 + tmd  t  

te. The associated expected damage detection delay is formulated as [Kim and 

Frangopol 2011d] 

1

1

1 1
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 
 (5.26)

It should be noted that case 3 is not considered in Equation (5.26), because it is 

assumed that there is no detection delay during monitoring duration mdt . On the 

contrary, when the inspection is used to detect damage after monitoring (i.e., tmon,1 + 

tmd < tinsp,1), the expected damage detection is [Kim and Frangopol 2011d]  
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 (5.27)

 

5.5 Inspection and Monitoring Cost 

The inspection cost is related to the quality of an inspection method. In general, 

inspection methods associated with a higher quality are more expensive [Frangopol 
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et al., 1997b]. In this study, the cost Cins associated with an inspection method is 

expressed using 0 5.  in Equations (5.15) and (5.18) (i.e., damage intensity at which 

the inspection method has a probability of detection of 0.5) as [Mori and Ellingwood 

1994b] 

20
0 5(1 0 7 )ins ins .C .     (5.28)

where αins is a constant. The total inspection cost CINS for ninsp inspections is 

computed as  

1 (1 )

insp

insp ,i

n
ins

INS t
disi

C
C

r


  (5.29)

where rdis = discount rate of money, where tinsp,i = the ith inspection time.  

The monitoring cost includes initial design, installation, operation and repair 

cost of the monitoring system [Frangopol and Messervey 2009a and 2009b]. The 

monitoring cost Cmon can be estimated as 

mon mon,ini md mon,anC C t C    (5.30)

where tmd = monitoring duration (years); Cmon,ini = initial cost of monitoring system 

consisting of design and installation cost of the monitoring system; Cmon,an = annual 

cost related to operation and repair of the monitoring system. Furthermore, when a 

structure is monitored nmon times with the same monitoring duration tmd, the total 

monitoring cost is  

1 (1 )

mon

mon ,i

n
md mon,an

MON mon,ini t
disi

t C
C C

r


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  (5.31)

where tmon,i = the ith monitoring starting time. 
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5.6 Bayesian Updating 

When the observed data are limited, inspection results can be used to update 

systematically an existing information or judgment by using Bayesian techniques, 

and furthermore the updated results can provide the better prediction. If the 

parameter  is a random variable with the PDF f’(υ) and the inspection results 

provide the likelihood L(υ) of observing the experimental outcome assuming that the 

value of parameter is , the updated (i.e., posterior) PDF f”(υ) of the parameter  

can be obtained as [Ang and Tang 2007] 










dfL

fL
f

)(')(

)(')(
)("  

(5.32)

Furthermore, the updated mean "
  and standard deviation "

  of a random 

variable   are  





   df )(""  (5.33a)

5.02 ])(")"([" 



   df  (5.33b)

Enright and Frangopol (1999a and 1999b) investigated the effects of updating 

corrosion initiation time and rate on time-dependent reliability and optimal lifetime 

maintenance planning. Based on the procedure provided in Enright and Frangopol 

(1999a), Bayesian technique is used to consider the effect of updating a parameter 

associated with prediction of corrosion initiation time on inspection and monitoring 

planning associated with minimization of the expected corrosion damage detection 
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delay. 

 

5.7 Application to Existing RC Bridge under Corrosion  

5.7.1 Description of E-17-HS 

The proposed approach is applied to the existing RC bridge E-17-HS. According to 

Akgül (2002), E-17-HS is a four span two-lane bridge located over Interstate 

Highway 25 on 160th Avenue between 144th Avenue and State Highway 7 in Adams 

County, Colorado. Figure 5.4 shows the cross-sectional view of this bridge. The 

concrete deck of this bridge is 177.8 mm thick with 38.1 mm thick asphalt pavement. 

The deck is supported by four RC beams at end spans and four steel plate girders at 

intermediate spans. The concrete deck at the end spans is 11.28 m long and 10.36 m 

wide. The space between RC girders at end spans is 2.64m, and each girder has a 

width of 40.64 cm and a depth of 66.04 cm. More detailed information is given in 

Akgül (2002), and Marsh and Frangopol (2008). This application focuses on 

corrosion of top transverse reinforcement bars of the interface between the slab and 

girders at end spans where the maximum negative moment can occur as shown in 

Figure 5.4.  

 

5.7.2 Prediction of Reinforcement Area Loss 

Corrosion initiation and loss of reinforcement area over time are calculated using 

Equation (5.3) and Equation (5.4) associated with uniform corrosion model, 
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respectively. All the variables in Equation (5.3) and (5.4) are assumed to be 

lognormally distributed. These random variables are summarized in Table 5.1. 

Monte Carlo simulation (i.e., a sample size of 100,000) is used to predict 

time-dependent slab reinforcement area as shown in Figure 5.5. PDFs of 

reinforcement area Ast at every 10 years are shown in Figure 5.5(a). PDFs of 

corrosion initiation time and time for Ast = 0.95Ainit, 0.90Ainit, 0.85Ainit, 0.80Ainit are 

shown in Figure 5.5(b). From Figure 5.5, it can be seen that the dispersion of 

reinforcement area Ast increases over time. Early detection of corrosion is important 

to structure managers in order to update the maintenance strategy. Figure 5.6 shows 

the PDF of lognormal distribution associated with corrosion initiation time. Mean 

and standard deviation of corrosion initiation time are 3.35 years and 1.61 years (see 

Figure 5.6), respectively. In this application, corrosion initiation serves as the 

damage criterion. The PDF in Figure 5.6 is used to formulate the expected damage 

detection E(tdelay) of Equations (5.22) and (5.25), and to define the lower-bound ts 

and the upper-bound te in Equation (23). 

 

5.7.3 Optimum Inspection Plans 

In order to establish a cost-effective maintenance strategy for a deteriorating RC 

structure, the degree of corrosion damage should be predicted as accurately as 

possible. However, since there are uncertainties related to the prediction of structural 

performance, inspection should be applied according to an optimized schedule 
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considering uncertainties associated with damage occurrence/propagation and 

quality of inspection. The quality of inspection depends on the inspection methods 

and the number of inspection readings. In order to measure the damage intensity of a 

deteriorating RC deck, visual inspection, non-destructive testing including half-cell 

potential, radiographic, and ultrasonic tests can be applied.  

As the damage detection delay increases, the probability of damage detection 

increases due to the increase of damage propagation during the delay. For example, 

if the damage (e.g., corrosion) has occurred at time t ( corr insp ,1 insp ,2T t t t   ), the 

degree of corrosion damage c(tinsp,1) at the time of first inspection tinsp,1 will be less 

than the degree of damage c(tinsp,2) at the time of second inspection tinsp,2. Therefore, 

according to Equations (5.13) and (5.15), the probability of detection Pinsp,c,1 at time 

tinsp,1 is less than the probability of detection Pinsp,c,2 at time tinsp,2. For this reason, the 

detectability function Pinsp,c,i (δ) for the ith inspection at time tinsp,i in Equation (5.15) 

is applied for formulation of the expected damage detection delay E(tdelay) in 

Equation (5.22), considering the effect of corrosion damage propagation between 

time for damage to occur and time to detect corrosion. The standard deviation c ,  

in Equation (5.15) is assumed to be 0.1 0 5c , .  [Frangopol et al. 1997b].  

In this application, inspection planning is formulated as an optimization 

problem by minimizing the expected damage detection delay E(tdelay) as follows 

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,nisnp}   (5.34)
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to minimize E(tdelay) (5.35)

such that insps insp ,1 insp ,2 insp ,i insp ,n et t t t t t          

1insp ,i insp ,i-1t t   year 

(5.36a)

(5.36b)

given ninsp, 0 5c , .  and )(tfT  (5.37)

where inspt = vector of design variables (i.e, inspection times), st = lower-bound of 

damage occurrence time (years), et = upper-bound of damage occurrence time 

(years), insp ,it = ith inspection time (years) among ninsp inspections, and 0 5c , . = 

corrosion damage intensity at which the given inspection method has 50% 

probability of detection as indicated in Equation (5.15). With the given PDF of the 

damage occurrence time )(tfT  (see Figure 5.6), st and et  in Equation (5.36a) are 

obtained from Equation (5.23). Based on Equation (5.22), E(tdelay) associated with a 

given number ninsp of inspections is the objective function of this optimization 

problem. In this application, tinsp,e in Equation (5.21) is assumed to be equal to te. In 

order to solve the optimization problem, the toolbox (i.e., constrained nonlinear 

minimization) provided in MATLAB version R2009a [MathWorks Inc. 2009] was 

used. The objective is to minimize the expected delay E(tdelay) from the corrosion 

initiation time to time for corrosion to be detected by inspections. The design 

variables are the inspection times tinsp,1, tinsp,2,…, tinsp,ninsp in Equation (5.34), and the 

constraints are indicated in Equation (5.36). The PDF of the corrosion initiation time 

in Figure 5.6 is used as the given PDF )(tfT  in Equation (5.37). The time interval 

between inspections is assumed to be at least one year as indicated in Equation 
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(5.36b).  

The effects of number of inspections and inspection quality on the minimum 

expected corrosion damage detection delay are plotted in Figure 5.7(a). The relation 

between minimum expected damage detection delay E(tdelay) and the total inspection 

cost CINS is shown in Figure 5.7(b), and the total inspection cost CINS is computed 

using Equation (5.29) without considering discount rate of money. αins in Equation 

(5.28) is assumed 7. Figures 5.8(a) and 5.8(b) show the optimal plans for inspection 

method associated with c,0.5 = 0.01 and 0.05. The values of design variables 

objectives, and the cost associated with each optimum inspection plan are provided 

in Tables 5.2.  

If two inspections with c,0.5 = 0.05 is used to detect corrosion, the inspections 

should be performed at 4.46 and 6.71 years as shown in Figure 5.8(b). The 

associated expected damage detection delay E(tdelay) and cost CINS are 2.51 years and 

6.87 (see Figures 5.7(a), 5.8(b) and Table 5.2). If the number of inspection increases 

twice (i.e., four inspections), the inspections have to be applied at 3.61 years, 4.64 

years, 5.90 years, and 7.81 years, and E(tdelay) is 1.89 years (see Figures 5.7(a), 5.8(b) 

and Table 5.2). Furthermore, if a three-time inspection with higher probability of 

damage detection (i.e., c,0.5 = 0.01) is applied, the inspections should be performed 

at 3.05 years, 4.50 years and 6.68 years as shown in Figure 5.8(a). In this case, as 

indicated in Table 5.2, the associated E(tdelay) and CINS are 1.25 years and 18.25, 

respectively.  
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From these results, it can be seen that an increase in the number of inspections 

leads to reduction of the minimum E(tdelay) and increase of the total inspection cost 

CINS. Also, the minimum E(tdelay) decreases with improving the quality of inspection. 

It is noted that the values of the lower and upper bounds ts and te, respectively, 

depend on the PDF of the corrosion initiation time (see Figure 5.6) as indicated in 

Equation (5.23) rather than the number of inspections or quality of inspection. 

 

5.7.4 Optimum Monitoring Plans 

The optimum design process of corrosion monitoring includes decisions on (a) types 

of sensors, (b) location and number of sensors, and (c) operating duration of sensors. 

In order to detect corrosion, a special macrocell system (i.e., anode-ladder-system) 

can be used, which indicate the critical depth of the reinforcement of a concrete deck 

with respect to corrosion [Raupach and Schießl 2001]. Furthermore, measurement of 

the corrosion rate of the reinforcement is useful to estimate and predict the area of 

the reinforcement. The most extensively used method for determining corrosion rates 

of the deteriorating reinforcement is the linear polarization resistance (LPR) 

measurement [Qian, 2005]. This chapter focuses on the optimum monitoring planning 

under assumptions that sensors are properly installed to detect the corrosion damage 

and, as mentioned previously, the probability of corrosion damage detection during 

monitoring duration is perfect.  

The formulation of the optimization problem to minimize the expected damage 
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detection delay E(tdelay) in Equation (5.25) is as follows 

Find tmon = {tmon,1, tmon,2, … , tmon,i, … , tmon,nmon}  (5.38)

to minimize E(tdelay) (5.39)

such that mon,i+1 mon,i mdt t t   

s mon,1t t ; e mon,m mdt t t   

(5.40a)

(5.40b)

given nmon, mdt  and )(tfT  (5.41)

where mont = vector of design variables (i.e., monitoring starting times), mon,it = ith 

monitoring starting time (years) (i = 1, 2, ..., nmon), mdt = given monitoring duration 

(years), and nmon = given total number of monitoring actions. st  and et  are the 

lower and upper bounds of damage occurrence time t (years), respectively, and are 

obtained from the given PDF )(tfT  (see Equation 5.23), where the PDF of 

corrosion initiation time )(tfT  is defined in Figure 5.6. The objective function 

E(tdelay) with a given number nmon of monitoring actions can be formulated using 

Equation (5.25).  

Optimal monitoring plans to detect the corrosion with the minimum expected 

detection delay E(tdelay) are provided in Figures 5.9 and 5.10 and Table 5.3. Figure 

5.9(a) shows the effects of monitoring duration and number of monitorings on the 

minimum E(tdelay). Figure 5.9(b) shows the effects of monitoring durations on the 

interaction between the total monitoring cost CMON and the minimum E(tdelay). CMON 

is estimated using Equations (5.30) and (5.31). The discount rate of money rdis in 

Equation (5.31) is not considered in this application. Cmon,ini and Cmon,an in Equation 
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(5.30) are assumed to be 10. The optimal monitoring plans associated with the 

monitoring durations mdt  = 0.1 year and mdt  = 1.0 year are shown in Figures 

5.10(a) and 5.10(b), respectively. If two monitorings with the same monitoring 

duration mdt  = 0.1 year are performed, the starting times of the first and second 

monitoring actions, in order to minimize the expected delay from the corrosion 

initiation time to the time for the corrosion to be detected, has to be 3.31 years and 

5.74 years, respectively (see Figure 5.10(a) and Table 5.3). It means that the first 

monitoring should be conducted from 3.31 to 3.41 years, and the second monitoring 

from 5.74 to 5.84 years. The associated E(tdelay) and CMON are 1.37 years and 12, 

respectively (see Figures 5.9(a) and 5.9(b), and Table 5.3). It can be seen that 

increases of number of monitoring actions and monitoring duration result in 

reduction of the minimum E(tdelay) and increase of CMON.  

 

5.7.5 Effect of Inspection Updating 

If the additional information on the surface chloride concentration Cch,o in Equation 

(5.2) is available, the corrosion initiation time of reinforcement can be predicted 

more accurately by incorporating the additional information into the existing 

information. For illustrative purposes, suppose that an inspection is performed before 

making monitoring planning, and the surface chloride concentration Cch,o measured 

from this inspection is lognormally distributed with a mean of Cch,oμ  of 0.20 g/mm3 

and the standard deviation of Cch,oσ  of 0.020 g/mm3. This additional information 
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can be used for updating by Bayesian techniques. The PDF of the updated chloride 

concentration in Figure 5.11(a) is computed by using Equation (5.32). Based on the 

prior, inspected and updated chloride concentration, the corrosion initiation time of 

reinforcement area of the RC deck can be predicted as shown in Figure 5.11(b).  

The optimal inspection and monitoring plans to minimize the expected 

detection delay, from the corrosion initiation time to time for corrosion to be 

detected, can be computed using the PDFs in Figure 5.11(b). The effects of updating 

surface chloride concentration Cch,o and number of inspections on the minimum 

expected detection delay E(tdelay) are shown in Figure 5.12(a). The optimum 

inspection plans associated with the prior, inspection, and updated PDFs in Figure 

5.11(b) are presented in Figure 5.12(b) for the three-time inspection with c,0.5 = 0.03. 

For the optimum monitoring planning for corrosion detection, the effects of updating 

surface chloride concentration on the minimum E(tdelay) are shown in Figure 5.13(a). 

The optimal monitoring plans are illustrated in Figure 5.13(b), when the three-time 

monitoring with the duration tmd = 0.5 year are applied. It is interesting to note that 

the standard deviation of corrosion initiation time has a dominant effect on the 

minimum E(tdelay). 

 

5.7.6 Optimum Balance of the Expected Damage Detection Delay and Cost 

The increase of number of inspections as well as the increase of inspection quality is 

necessary to reduce the expected damage detection delay. However, this increase 
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needs additional financial resources. In order to deal with these two conflicting 

criteria, a bi-objective optimization is applied by simultaneously minimizing both 

the inspection cost and the expected damage detection delay. The bi-objective 

optimization problem for optimum inspection planning is formulated as 

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,ninsp},  

ninsp, and 0 5c , .  

(5.42)

to minimize both  E(tdelay) and CINS  (5.43)

insps insp ,1 insp ,2 insp ,i insp ,n et t t t t t          (5.44a)

1insp ,i insp ,i-1t t   year ; ninsp = 1, 2, ..., 5  (5.44b)

such that 

0 50 01 0 1c , .. .   (5.44c)

given )(tfT  (5.45)

In the bi-objective optimization problem, the design variables are the inspection 

times tinsp,1, tinsp,2,…, tinsp,ninsp, the number of inspections ninsp, and 0 5c , .  as indicated 

in Equation (5.42). The constraints are provided in Equation (5.44). The total 

inspection cost CINS is computed using Equation (5.29), as indicated previously. The 

PDF of corrosion initiation time )(tfT  in Figure 5.6 is used as given in Equation 

(5.45). In order to find the Pareto optimal solution set of this bi-objective 

optimization problem, NSGA-II (Non-Dominated Sorting Genetic Algorithms) 

program developed by Deb et al. (2002) is used. An initial population of 1000 is 

considered, and the maximum number of generations is fixed at 200. Crossover and 

mutation operations are used with respective probabilities of 80% and 20%, 
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respectively.  

The Pareto optimal solution set associated with minimization of both E(tdelay) 

and CINS is shown in Figure 5.14(a). Optimum values of design variables and the 

associated E(tdelay) and CINS for solutions Ac,1, Ac,2, Ac,3, and Ac,4 in Figure 5.14(a) are 

provided in Figure 5.14(b) and Table 5.4. For solution Ac,4 in Figure 5.14(a), the 

associated E(tdelay) and CINS are 2.96 years and 5, respectively. The inspection plan 

for solution Ac,4 requires two-time inspection with 0 5c , . = 0.072. If solution Ac,1 

instead of solution Ac,4 is selected as an inspection plan, E(tdelay) is reduced by 70% 

(i.e., from 2.96 to 0.89), but the cost has to increase six times (i.e., from 5 to 30) (see 

Table 5.4).  

 

5.8 Application to Ship Hull Structures Subjected to Fatigue  

5.8.1 Description of a Ship Hull Structure 

The proposed approach is applied to ship hull as shown in Figure 5.15. In this 

application, the joint between bottom plate and longitudinal plate is considered as a 

critical location subjected to fatigue. Under longitudinal loading and unloading, the 

crack in the plate can initiate on the edge connected to the stiffener and propagate 

away from the stiffener in the transverse direction as shown in Figure 5.15.  

 

5.8.2 Time-Dependent Crack Growth  

Crack length over time and time for a given crack length are calculated using 
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Equations (5.11) and (5.12), respectively. Initial crack length ao, annual stress cycles 

Nan, and material crack growth parameter C are assumed lognormally distributed 

random variables. The stress range Ssr is treated as a random variable with a Weibull 

PDF [Madsen et al. 1991]. Herein mean value of material parameter C is assumed to 

be 3.54  10-11, and m is assumed 2.54 for high yield steel (HY80) [Dobson et al. 

1983]. Descriptors of variables in Equations (5.11) and (5.12) are given in Table 5.5. 

In this application, the geometry function Y(a) is assumed to be one [Madsen et al. 

1991, Akpan et al., 2002]. Monte Carlo simulation with sample size of 100,000 is 

used to predict the crack length over time. Figure 5.16(a) shows the mean and 

standard deviation of time t associated with crack length a, and PDFs of time for a = 

10, 20, 30, and 40 mm. From this figure, it can be seen that after the crack size of 

around 1 mm, the crack size increases at a very high rate. In this application, the 

crack size of 1.0 mm serves as the crack damage criterion. It means that if the crack 

size is larger than 1 mm, the target structural component for inspection is in damaged 

state, and therefore the minimum crack length amin for fatigue damage intensity of 

Equation (5.19) becomes 1.0 mm. The maximum crack length amax in Equation (5.19) 

is assumed to be 50 mm herein. Figure 5.16(b) shows the PDF of fatigue damage 

occurrence time (i.e., time for crack length to reach 1.0 mm) obtained from Monte 

Carlo simulation and the best fitted PDF (i.e., Generalized Extreme Value (GEV) 

PDF defined in Equation (3.14)). The associated values of parameters par, par and 

λpar are 0.15, 1.65 and 3.21, respectively, as shown in Figure 5.16(b). This GEV PDF 
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is used to formulate the expected damage detection delay in Equation (5.22). Based 

on this PDF, ts and te are obtained as 0.51 and 21.95 years, respectively (see Equation 

(5.23)).  

 

5.8.3 Optimum Inspection Plans 

After fatigue damage has been occurred, the crack length grows so that the 

probability of detection will increase. In other words, as the damage detection delay 

increases, the probability of detection increases. Since the variables associated with 

the crack growth model are not deterministic, the probability of detection in terms of 

crack length a at time t is random. In order to formulate the expected damage 

detection delay E(tdelay) in Equation (5.22), the expected probability of detection 

using Equation (5.18) is applied herein. Figure 5.17 shows the expected probability 

of detection over time after crack damage occurrence (i.e., time for crack length a to 

be larger than amin) for three inspections with f,0.5 = 0.01, 0.03, and 0.05. As 

indicated in Equation (5.21) and Figure 5.2, tinsp,e is associated with the time when 

the damage can be detected with perfect detectability. In this application, tinsp,e is 

defined as 

tinsp,e = te + tp (5.46)

where te = upper-bound of damage occurrence time as indicated in Equation 5.23(b), 

and tp = time associated with the expected probability of detection of 0.999 after 

damage occurrence. When the inspection method with 0 5f , .  0.01 is used, tp will be 
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9.74 years when the damage is detected with the expected probability of detection of 

0.999 as shown in Figure 5.17. Therefore, tinsp,e for 0 5f , .  0.01 is 31.69 years, since 

the upper-bound of damage occurrence time te is 21.95 years as mentioned 

previously.  

In this chapter, inspection planning is formulated as an optimization problem by 

minimizing the expected fatigue damage detection delay E(tdelay) in Equation (5.22) 

with a given number ninsp of inspections as follows 

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,ninsp}   (5.47)

to minimize ( )delayE t  (5.48)

such that 1insp ,i insp ,i-1t t   year (5.49)

given ninsp, 0 5f , . , ( )Tf t  (5.50)

where tinsp = vector consisting of ninsp design variables of inspection times; insp ,it = 

ith inspection time (years); and 0 5f , . = fatigue damage intensity at which the given 

inspection method has 50% probability of detection. The objective is to minimize the 

expected time delay E(tdelay) from the crack damage initiation to time for the crack to 

be detected by inspections. The time interval between inspections is assumed to be at 

least one year (see Equation (5.49)). The times tinsp,0 (for i = 1) and tinsp,n+1 (for i = 

ninsp + 1) are ts and tinsp,e, respectively, as indicated in Equation (5.22). The number of 

inspections, 0 5f , .  representing the quality of inspection, and PDF of the fatigue 

damage occurrence time ( )Tf t  in Figure 5.16(b) are given (see Equation (5.50)). 
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The optimization toolbox (i.e., constrained nonlinear minimization) provided in 

MATLAB version R2009a [MathWorks Inc. 2009] was used to solve this problem.  

Figure 5.18 shows the effects of (a) number of inspections and (b) total 

inspection costs on minimum expected damage detection delay E(tdelay) for 

0 5f , .  0.01, 0 5f , .  0.03, and 0 5f , .  0.05. The total inspection cost CINS is 

computed using Equations (5.28) and (5.29), where αins is assumed 5, and the 

discount rate of money rdis is not considered in this application. It should be noted 

that the inspection associated with time tinsp,e in Equation (5.46) is not accounted in 

the number of inspections.  

The optimal inspection plans associated with the number of inspections ninsp = 1, 

3, and 5 are shown in Figure 5.19. If one time inspection with f,0.5 = 0.03 is used to 

detect fatigue crack damage, the inspection has to be performed at 11.90 years as 

shown in Figure 5.19(a). The associated E(tdelay) and CINS are 9.74 years and 3.27, 

respectively (see Figure 5.18(b)). If the number of inspection increases three times 

(i.e., the number of inspection ninsp = 3), the inspections should be applied at 7.66, 

10.62, and 16.67 years, and E(tdelay) will be 5.66 years (see Figure 5.19(b)). 

Furthermore, if three inspections with f,0.5 = 0.01 instead of f,0.5 = 0.03 is used, 

E(tdelay) will be reduced by 36% (i.e., from 5.66 to 3.62 years), but the total 

inspection cost CINS will increase by 33% (i.e., from 9.81 to 13.03), as shown in 

Figure 5.18(b). The associated optimum inspection times will be 5.64, 8.35, and 

13.51 years (see Figure 5.19(b)). From these results, it can be seen that reduction of 
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the minimum E(tdelay) results from increase in the number and/or the quality of 

inspections. Through comparison among the optimum inspection times associated 

with f,0.5 = 0.01, 0.03 and 0.05, it can also be seen that the inspection with higher 

quality (i.e., smaller value of f,0.5) can be applied earlier than the inspection with 

lower quality (i.e., larger value of f,0.5), in order to minimize E(tdelay).  

 

5.8.4 Optimum Balance of the Expected Damage Detection Delay and Cost 

Well-balanced inspection planning should be considered as a solution of a two 

conflicting criteria optimization problem by simultaneously minimizing both the 

expected damage detection delay and/or the total inspection cost. In this application, 

optimum balanced inspection planning is obtained, when (a) same type and (b) 

different types of inspections are used. NSGA-II [Deb et al. 2002] is used, in order to 

find the Pareto optimal solution set of this bi-objective optimization problem.  

 

Optimum balance when same type of inspection is applied 

When same type of inspection (i.e., constant 0 5f , . ) is applied ninsp time, the 

bi-objective optimization problem for inspection planning is formulated as 

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,,ninsp}, 

and 0 5f , .  

(5.51)

to minimize both  E(tdelay) and CINS  (5.52)

such that 1insp ,i insp ,i-1t t   year (5.53a)
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 1insp ,t   20 years (5.53b)

 0 50 01 0 1f , .. .   (5.53c)

given ninsp, ( )Tf t  (5.54)

In this bi-objective optimization problem, the objectives are minimization of both the 

expected damage detection delay E(tdelay) and the total inspection cost CINS. The 

design variables are the vector of inspection times tinsp, and 0 5f , . . As indicated in 

Equation (5.53), time interval between inspections should be at least one year, and 

application of the first inspection is required within 20 years. The value of 0 5f , .  has 

to be in the interval 0.01 to 0.1. ( )Tf t  in Figure 5.16(b) and number of inspections 

ninsp are used as given as indicated in Equation (5.54).  

Through the generic algorithm (GA) process with 200 generations, a Pareto set 

of 100 solutions for ninsp = 1 is obtained as shown in Figure 5.20(a). The relations 

between design variables (i.e., first inspection time tinsp,1 and 0 5f , . ) for solutions Af,1, 

Af,2, Af,3 ,Af,4 and Af,5 are also illustrated in Figure 5.20(a). The expected damage 

detection delay E(tdelay) of solutions Af,1 to Af,5 decreases from 13.21 to 7.09 years 

with decrease of both 0 5f , .  (from 0.1 to 0.01) and tinsp,1 (from 15.27 to 9.35), 

respectively. Accordingly, the associated total inspection cost CINS increases from 

1.17 to 4.35. Figure 5.20(b) shows Pareto optimum solution sets for ninsp = 1, 2, 3, 4 

and 5.  

In order to find the final Pareto front considering the number of inspections ninsp 

as a design variable, ε-constraint approach, based on the Pareto solution sets for ninsp 
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= 1 to 5 in Figure 5.20(b), can be used. In this approach, multi-criteria optimization 

problem is transformed into a single objective optimization problem by selecting one 

of the objectives to be minimized and treating other objective functions as 

constraints [Haimes et al. 1971]. The general formulation of ε-constraint approach is 

[Arora 2004] 

Minimize fi  (5.55)

subject to  fj  εj for all j = 1, 2, …, k;  j  i  (5.56)

where i  {1, 2, …, k}. The number of objective functions k is equal to 2, and fi = f1 

is the expected damage detection delay E(tdelay), and fj = f2 is the total inspection cost 

CINS. By changing the value of εj from the minimum value of f2 (i.e., 1.17) to the 

maximum value of f2 (i.e., 21.72), the final Pareto front of the Pareto solution sets for 

ninsp = 1 to 5 in Figure 5.20(b) is obtained as shown in Figure 5.20(c). The optimum 

inspection times for solution Bf,1, Bf,2, Bf,4, and Bf,6 in Figure 5.20(c) are provided in 

Table 5.6 and Figure 5.20(d). For Pareto point Bf,4, the associated E(tdelay) and CINS 

are 4.55 years and 8.69, respectively (see Table 5.6). The inspection plan for solution 

Bf,4 requires two inspections with 0 5f , . = 0.01 as shown in Figure 5.20(d). If Pareto 

solution Bf,6 instead of solution Bf,4 is selected as an inspection plan, the number of 

inspections has to increase twice (i.e., from 2 to 4), CINS should also increase twice, 

but E(tdelay) will be reduced from 4.55 to 3.15 years (see Table 5.6). It should be 

noted that solutions Bf,3, Bf,5 and Bf,7 in Figure 5.20(c) are the same as the solutions 

associated with ninsp = 1; 0 5f , .  = 0.01 in Figure 5.19(a), ninsp = 3; 0 5f , .  = 0.01 in 
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Figure 5.19(b), and ninsp = 5; 0 5f , .  = 0.01 in Figure 5.19(c), respectively. 

 

Optimum balance when different inspection types are applied 

When different inspection types are applied (i.e., 0 5f , .  is not the same), the 

formulation of the bi-objective optimization problem is  

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,,ninsp},  

and f,0.5 = {f,0.5,1, f,0.5,2, … , f,0.5,i, … , f,0.5,ninsp} 

(5.57)

to minimize both  E(tdelay) and CINS  (5.58)

As indicated, the constraints and given condition of this problem are identical with 

those in Equations (5.53) and (5.54). A Pareto set of 100 solutions is obtained after 

500 generations. Figure 5.21 shows Pareto solution sets based on both same type 

(i.e., case 1 in Figure 5.21(a) and case 3 in Figure 5.21(b)) and different types (i.e., 

case 2 in Figure 5.21(a) and case 4 in Figure 5.21(b)) of inspections. Optimum 

values of design variables and the associated E(tdelay) and CINS for Pareto solutions in 

Figure 5.21 are provided in Table 5.7. Solutions Cf,1, Cf,4, and Df,5 in Figure 5.21 are 

the same as Bf,2, Bf,4, and Bf,5 in Figure 5.20(c), respectively. As shown in Table 5.7 

and Figures 5.21(a) associated with number of inspections ninsp = 2, solutions C’f,2 of 

case 1 and Cf,2 of case 2 have the same E(tdelay) (i.e., 7.92 years), but if solution Cf,2 

instead of C’f,2 is selected as an inspection plan, the total inspection cost can be 

reduced by 19% (i.e., from 4.93 to 4.13). Similarly, in Figure 5.21(b) associated with 

ninsp = 3, solutions Df,2 (of case 4) and D’f,2 (of case 3) have the same E(tdelay), but 
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Df,2 requires less cost than D’f,2. From these comparisons between Pareto solution 

sets of cases 1 and 2 (or cases 3 and 4), it can be seen that the inspection plan based 

on different inspection types will require less cost than the inspection plan based on 

the same type of inspection for given expected damage detection delay. As indicated 

in Table 5.7, Pareto solutions Cf,1 and Cf,3 have 0 5 1f , . , = 0.10 and 0.01, respectively, 

while having the same 0 5 2f , . ,  = 0.10. The values of 0 5 1f , . ,  for solutions Cf,3 and Cf,4 

are the same (i.e., 0.01), but 0 5 2f , . ,  for Cf,3 and Cf,4 are 0.10 and 0.01, respectively.  

Furthermore, the Pareto solution sets of the bi-objective optimization problem 

for ninsp = 1, 4, 5 are obtained. The ε-constraint approach (see Equations (55) and 

(56)) based on Pareto solution sets for ninsp = 1 to 5 provides the final Pareto front as 

shown Figure 5.22(a). Values of objective functions and design variables for 

solutions Ef,1 to Ef,7 are provided in Table 5.8. As indicated in this table, values of 

objective functions and design variables for solutions Ef,1, Ef,3 and Ef,5 in Figure 

5.22(a) are identical to those of solutions Bf,1, Bf,2 and Bf,4 in Figure 5.20(c), 

respectively. In the final Pareto front , solution Ef,1 needs the lowest total inspection 

cost CINS of 1.17, but leads to the largest expected damage detection delay E(tdelay) of 

13.21 years. In contrast, solution Ef,7 requires the highest inspection cost CINS of 

17.38, while results in the least expected damage detection delay E(tdelay) of 3.15 

years. It should be noted that there is no solution associated with ninsp = 5. When the 

discount rate of money rdis = 3 %/year for the total inspection cost in Equation (5.29) 

is applied, the final Pareto front is presented in Figure 5.22(b). Table 5.8 provides 
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values of objective functions and design variables for solutions Ff,1 to Ff,5. Solution 

Ff,4 in Figure 5.22(b) has the same expected damage detection delay (i.e., E(tdelay) = 

4.55 years) as that of solution Ef,5 in Figure 5.22(a). However, the total inspection 

cost CINS associated with solution Ff,4 is less than that of solution Ef,5 as indicated in 

Table 5.8 and Figure 5.22. It can be seen that for given expected damage detection 

delay, the inspection plan considering discount rate of money requires less cost than 

that without consideration of discount rate. Among the final Pareto solution set with 

rdis = 3 %/year, solution Ff,5 requires the highest inspection cost CINS of 11.53, 

leading to the least expected damage detection delay E(tdelay) of 3.63 years.  

 

5.9 Combined Inspection / Monitoring Planning  

5.9.1 Bi-Objective Optimization Formulation for Combined Inspection / Monitoring 

Planning 

If both inspection and monitoring are used to detect damage, and the available 

number N of inspection ninsp and/or monitorings nmon is equal to 2 (i.e., N = ninsp + 

nmon = 2), then there will be four possible cases (inspection followed by inspection, 

inspection followed by monitoring, monitoring followed by inspection, and 

monitoring followed by monitoring) as shown in Figure 5.23(a). The event tree in 

Figure 5.23(a) is used to consider all possible cases (I, II, III, and IV) associated with 

inspection or monitoring. Every case has its own bi-objective optimization problem. 

Each bi-objective optimization problem consists of its own design variables, and 
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produces a Pareto solution set. For example, the design variables of case I in Figure 

5.23(a) are inspection times (i.e., tinsp,1 and tinsp,2), and inspection quality represented 

by 0 5.  as indicated in Table 5.9. The objective functions associated with this case 

are the expected damage detection delay E(tdelay) of Equation (5.22) and the total 

inspection cost CINS of Equation (5.29), when the number of inspections ninsp = 2. For 

this case, the total cost CCOM (i.e., CINS + CMON) is equal to CINS, since there is no 

monitoring (i.e., CCOM = 0). For case IV in Figure 5.23(a), the bi-objective 

optimization problem is formulated by selecting the design variables as monitoring 

times (i.e., tmon,1 and tmon,2) and monitoring duration tmd (see Table 5.9). The 

associated objective functions are indicated in Equations (5.25) and (5.31) for nmon = 

2. Pareto fronts corresponding to the four cases can be obtained after solving 

bi-objective optimization problems as shown in Figure 5.23(b). Based on these four 

Pareto solution sets, the final Pareto solution set can be determined. This Pareto 

solution set PSN for N = 2 will provide the sequence of inspections and monitorings 

(i.e., inspection followed by inspection, inspection followed by monitoring, 

monitoring followed by inspection, or monitoring followed by monitoring) as well as 

inspection and/or monitoring times, and inspection quality, and monitoring durations. 

This procedure to determine the Pareto solution set PSN for a given number of 

inspections and/or monitorings N can be extended to find the final Pareto solution set 

PS when the available number of inspections and/or monitorings N ranges from 1 to 

Nmax. Figure 5.24 and Figure A.4 in Appendix provides such flowchart to find the 
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final Pareto solution set PS. The final Pareto solution set PS will provide the number 

of inspections and/or monitorings, the sequence of inspections and monitorings, the 

inspection and/or monitoring times, inspection quality, and monitoring duration.  

 

5.9.2 Application to a Naval Ship Hull Structure Subjected to Fatigue 

The proposed approach is applied to a naval ship hull structure. As shown in Figure 

5.15, a critical location subjected to fatigue is assumed to be the joint between 

longitudinal plate and bottom plate. The variables associated with the prediction of 

crack size (see Equations (5.11) and (5.12)) are provided in Table 5.10. Figure 5.25 

shows the PDF of fatigue damage initiation (i.e., amin = 1.0 mm) time obtained from 

Monte Carlo simulation with 100,000 samples and its best fitted PDF (i.e., GEV 

PDF defined in Equation (3.14)). The lower and upper bounds of damage occurrence 

time (i.e., ts and te in Equation (5.23)) are 0.41 and 17.56 years, respectively.  

When the available number of inspections and/or monitorings is N = 2, there 

will be four cases. Each case has its own bi-objective optimization formulation as 

mentioned previously (see Figure 5.23 and Table 5.9). The bi-objective optimization 

formulations of these four cases are formulated as 

Find tinsp,1, tinsp,2, and 0 5f , .  for case I (5.59a)

 tinsp,1, tmon,1, 0 5f , . , and tmd for cases II and III (5.59b)

 tmon,1, tmon,2, and tmd for case IV (5.59c)

to minimize both  E(tdelay) and CCOM  (5.60)
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such that 1insp ,2 insp ,1t t   year; and 

0 50 01 0 1f , .. .   

for case I (5.61a)

 1mon,1 insp ,1t t   year;   

0 50 01 0 1f , .. .  ; and 

0.3 ≤ tmd ≤ 1.0 year 

for case II (5.61b)

 1insp ,1 mon,1t t   year; 

0 50 01 0 1f , .. .  ;and 

0.3 ≤ tmd ≤ 1.0 year 

for case III (5.61c)

 1mon,2 mon,1t t   year, and 

0.3 ≤ tmd ≤ 1.0 year 

for case IV (5.61d)

given N = ninsp + nmon = 2, and ( )Tf t  (5.62)

The design variables and constraints of the bi-objective optimization formulations 

for cases I, II, III, and IV are indicated in Equations (5.59) and (5.61), respectively. 

The objectives are to minimize both E(tdelay) and CCOM. The GEV PDF ( )Tf t  in 

Figure 5.25 indicated in Equation (5.26) is used to formulate E(tdelay). NSGA-II 

program [Deb et al. 2002] is used to find the Pareto optimal solution set of the 

bi-objective optimization formulations in Equations (5.59) to (5.62). In order to 

estimate the inspection and/or monitoring cost, Equations (5.29) and (5.31) are used 

with the assumptions that αins in Equation (5.28) is 5, Cmon,ini and Cmon,an in Equation 

(5.30) are assumed 10 and 20, respectively. 

The GA process with 500 generations provides Pareto solutions sets for cases I, 
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II, III, and IV as shown in Figure 5.26(a). PSN,n denotes a Pareto set of nth case 

when available number of inspections and/or monitorings is N. For example, PS2,I in 

Figure 5.26(a) is the Pareto solution set of case I (INS  INS case in Figure 5.23 

and Table 5.9). A Pareto set PSN,n consists of 100 populations. The final Pareto 

solution set PS2, based on the Pareto solution sets for n = I to IV in Figure 5.26(a), is 

obtained using the ε-constraint approach in Equations (5.55) and (5.56).  

The final Pareto solution set PS2 is shown in Figure 5.26(b). Combined 

inspection / monitoring plans of the three representative solutions As,1, As,2 and As,3 

in Figure 5.26(b) are illustrated in Figure 5.26(c). The inspection and monitoring 

plan for solution As,1 requires two-time inspection (case I) applied at time tinsp,1 = 

5.34 years and tinsp,2 = 9.48 years with 0 5f , .  = 0.01, and the associated E(tdelay) and 

CCOM are 3.64 years and 8.69, respectively. If Pareto solution As,2 is selected instead 

of As,1, the expected damage detection delay E(tdelay) will be reduced from 3.64 years 

to 2.42 years, but an additional cost of 12.66 (i.e., 21.35 – 8.69) is needed as shown 

in Figure 5.26(b). The inspection and monitoring plan associated with As,2 (case II) 

consists of the inspection at time tinsp,1 = 4.07 years with 0 5f , .  = 0.01 and the 

monitoring starting time tmon,1 = 10.02 years with monitoring duration tmd = 0.3 year 

(see Figure 5.26(c)). It should be noted that the discount rate of money rdis is not 

considered, the value of 0 5f , .  is assumed to be the same for the first and second 

inspections associated with case I, and also the same monitoring duration tmd is used 

for the first and second monitoring associated with case IV.  
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In a similar way, the Pareto sets PSN for N = 1 to 5 are obtained as shown in 

Figures 5.27(a) to 5.27(e). The final Pareto set PS considering N as a design variable 

is also found by using the ε-constraint approach based on the Pareto solution sets 

PSN. The detailed procedure to find the final Pareto set PS is provided in Figure 5.24. 

Figure 5.27(f) shows the Pareto set PS. The optimum values of design variables and 

objective functions of the seven representative solutions Bs,1 to Bs,7 in Figure 5.27 

are provided in Table 5.11. Combined inspection / monitoring plans for solutions 

BS,1 to BS,7 are illustrated in Figure 5.28. Solutions Bs,3 and Bs,5 in Figure 5.27(f) are 

found in the Pareto solution set PS3 in Figure 5.27(c). Solutions Bs,4 and Bs,6 in 

Figure 5.27(f) are associated with the Pareto set PS4 in Figure 5.27(d). Solution Bs,6 

requires three-time monitoring with monitoring duration tmd = 0.33 year, and 

one-time inspection with 0 5f , .  = 0.01, and the corresponding E(tdelay) and CCOM are 

0.99 year and 33.90, respectively (see Table 5.11). Monitoring times tmon,1, tmon,2, 

tmon,3 are 2.58, 4.21, 6.68 years, and inspection time tinsp,1 is 12.59 years as shown in 

Figure 5.28. In order to reduce the total cost CCOM, solution Bs,4 consisting of four 

inspections with 0 5f , .  = 0.01 can be selected. As a result, CCOM can be reduced 

from 33.90 to 17.38, but E(tdelay) will increase from 0.99 to 2.49. 

 

5.9.3 Application to an Existing Highway Bridge Subjected to Fatigue 

The proposed approach is applied to an existing highway bridge, the Yellow Mill 

Pond Bridge located in Bridgeport, Connecticut, USA. In this application, critical 
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location is assumed to be the end of the cover plate weld. Detailed information is 

available in Fisher (1984). In order to predict the time for the occurrence of a given 

crack size at this critical location, Equation (5.11) is used. The geometry function 

Y(a) in Equation (5.11) is defined as [Fisher 1984] 

         e s w gY a Y a Y a Y a Y a     (5.63)

where Ye(a) = crack shape factor = 0.952; Ys(a) = front face factor = 1.211 – 

0.186 a / c ; Yw(a) = finite width factor = 1.0; and Yg(a) = stress gradient factor = 

 
10 435

1 6 79
.

tm fK . a / t


      where a = depth crack size; c = width crack size; tf = 

flange thickness; Ktm = stress concentration factor = –3.54 ln(Z / tf) + 1.98 ln(tcp / tf) 

+ 5.80; Z = weld size; tcp = cover plate thickness. The relation between depth crack 

size a and width crack size c is assumed as c = 5.462  a1.133. All necessary data to 

predict crack growth of this critical location are provided in Table 5.12. Material 

crack growth parameter C is assumed lognormally distributed random variable with 

mean value = 2.024  10-13 and coefficient of variation (COV) = 0.25, and material 

parameter m is assumed deterministic m = 3.0 [Shetty and Baker 1990]. The annual 

increase rate of number of cycles rcycle is treated as a random variable with lognormal 

PDF.  

Figure 5.29(a) shows PDF of time for the crack size amin = 1.0 mm assumed as 

the fatigue crack damage criterion. Through comparison with Monte Carlo 

simulation with 100,000 samples, best fitting PDF (i.e., GEV PDF) with par = 0.14, 

par = 1.33 and λpar = 2.69 (see Equation (3.14)) is obtained as shown in Figure 
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5.29(a). If the maximum crack size amax for damage intensity defined in Equation 

(5.19) is assumed to be 25 mm, the time for damage intensity to be 1.0 will have the 

mean value of 30.29 years and the standard deviation of 11.00 years as shown in 

Figure 5.29(b). Furthermore, frequency diagram associated with the time interval 

between damage occurrence (i.e., crack size a = amin) and full damage (i.e., crack 

size a = amax) is shown in Figure 5.29(b). In general, damage should be detected and 

repaired before the time when the crack size reaches amax. Since crack size will 

increase from amin to a during the damage detection delay, the damage detection 

delay has to be less than the time associated with amax – amin. Therefore, the time 

interval between damage occurrence and full damage in Figure 5.29(b) can provide 

an upper limit of the damage detection delay.  

The general formulation of the bi-objective optimization problem for the 

available number of inspection and/or monitorings N is  

Find tinsp = {tins,1, tins,2, … , tins,,ninsp} ;  

tmon = {tmon,1, tmon,2, … , tmon,,nmon} ;  

tmd = {tmd,1, md,2, … , md,nmon} ; and 

f,0.5 = {0.5,1, 0.5,2, … , 0.5,ninsp}  

(5.64)

to minimize both  E(tdelay) and CCOM  (5.65)

such that 1insp ,i insp ,i-1t t   year, 0 50 01 0 1f , . ,i. .  ; 

1mon,i mon,i-1t t   year; 0.3 year ≤ tmd,i ≤ 1.0 year; 

and 1 mon inspt t  year 

(5.66)



www.manaraa.com

 213

given N = ninsp + nmon; and ( )Tf t  (5.67)

The design variables are the vectors of inspection times tinsp, monitoring times tmon, 

monitoring duration tmd, and quality of inspections f,0.5. The GEV PDF ( )Tf t  in 

Figure 5.29(a) is used to formulate E(tdelay). For given N, the total number 2N of 

Pareto sets PSN,n can be obtained by solving the bi-objective optimization problems 

in Equations. (5.64) to (5.67). Finally, the Pareto solution set PS can be obtained 

through the procedure given in Figure 5.24. Figure 5.30(a) shows this final Pareto set 

PS, and six representative solutions Ab,1 to Ab,6. Values of design variables (i.e., N, 

tinsp, tmon, tmd, and f,0.5) and objective functions (i.e., E(tdelay) and CCOM) are given in 

Table 5.13. It should be noted that annual discount rate of money rdis is considered 

3%. The combined inspection / monitoring plans corresponding to solutions Ab,1 to 

Ab,6 are illustrated in Figure 5.30(b).  

 

5.10 Conclusions 

An approach to establish an optimum inspection and/or monitoring plan considering 

uncertainties associated with damage occurrence/propagation and inspection 

methods, and monitoring duration was proposed in this chapter. The optimization 

problem was formulated with the objective to minimize the expected damage 

detection delay. The effects of the quality of inspection method, number of 

inspections or monitorings, monitoring duration, and dispersion associated with 

damage occurrence on the minimization of the expected damage detection delay 
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were investigated. A well-balanced inspection and/or monitoring plan was 

considered as the solution of a bi-objective optimization problem by simultaneously 

minimizing both the expected damage detection delay and the total inspection and/or 

monitoring cost. A comparison of the cost-effective inspection plans based on same 

type and different types of inspections was carried out. For a given number of 

inspections and monitorings, all possible combinations of inspection and monitoring 

were considered to establish an optimum combined inspection / monitoring planning. 

The proposed approach is applied to existing highway bridges subjected to corrosion 

or fatigue, and ship hull structures subjected to fatigue. The following conclusions 

can be drawn:  

1. Uncertainties associated with damage occurrence/propagation and inspection 

methods are taken into account to formulate the damage detection delay. In order 

to consider damage propagation during the interval between damage occurrence 

time and time to detect damage, the time-dependent damage intensity was used to 

define the probability of damage detection.  

2. In the formulation of the expected damage detection delay, the lower and upper 

bounds for damage occurrence time were assumed as the limits based on the PDF 

of damage occurrence time. From the results presented in this chapter, it can be 

concluded that the time interval between the lower and upper bounds is directly 

affected by the dispersion of the damage occurrence time and has a significant 

influence on the expected damage detection delay.  
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3. Increase in the number of inspections and/or inspection quality (or number of 

monitorings and/or monitoring duration) may lead to reduction of the expected 

damage detection delay. However, this increase requires additional financial 

resources. Therefore, in order to establish cost-effective inspection and/or 

monitoring planning, an optimization problem based on minimization of both 

expected damage detection delay and inspection cost has to be solved. The result 

of this optimization problem provides the Pareto solution set. Based on this set, 

structure managers can select the appropriate inspection and/or monitoring plan 

considering also the importance of the structural component or system inspected. 

4. For a predefined expected damage detection delay, an optimum inspection plan 

based on different inspection types is more economical than that based on the 

same type of inspection. 

5. In general, damage may be detected with less delay by using monitoring than 

inspection. However, monitoring is usually more expensive than inspection. 

Therefore, combined inspection / monitoring planning provides an 

optimal-balanced solution.  

6. Damage detection delay leads to repair delay. This delay increases the probability 

of failure. The probability of failure based on the damage detection delay is 

formulated and extended for the optimum inspection or monitoring planning in 

Chapter 6. 

7. Several assumptions in this chapter need to be further investigated. For example, 
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the formulation of the expected damage detection delay for optimum monitoring 

planning is based on the assumption that the probability of damage detection 

during monitoring period is perfect, when the sensors are installed properly. 

However, there are uncertainties associated with the monitored data to identify 

the damage. Further studies need to consider these uncertainties.  

8. For deteriorating RC structure, concrete carbonation, time-dependent effects on 

both the chloride diffusion coefficient and the initial chloride concentration, and 

loss of bond between concrete and reinforcing bars have to be considered.  

9. The fatigue damage occurrence and propagation are random processes involving 

intermittent growths and dormant periods among others. In order to consider 

these evolutionary features, Markov chains, jump process models and stochastic 

differential equations have been developed [Sobczyk 1987]. The scheduling of 

inspection and monitoring can be affected by the time evolution model of fatigue 

cracks. Therefore, further studies are needed to incorporate such advanced 

stochastic modelings into the approach proposed in this chapter.  

10. Even though the damage is not detected by inspection or monitoring, each 

inspection or monitoring provides additional information to update the prior 

deterioration model and parameters [Zhang and Mahadevan 2000]. Therefore, 

further studies are necessary to establish the inspection and/or monitoring 

planning considering updating.  

11. The probabilistic approach proposed in this chapter does not include the effects 
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of maintenance to improve structural performance. Further studies are needed to 

develop cost-effective lifetime maintenance strategies considering both effects of 

maintenance on structural performance and minimization of expected damage 

detection delay. 
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Table 5.1 Random variables for corrosion initiation and loss of reinforcement (based 
on information provided in Akgül 2002; Marsh and Frangopol 2008) 

Random variables Units Mean COV 
Type of 

distribution

Depth from the concrete 
surface 

x 
(mm) 

30.2 0.2 Lognormal 

Surface chloride 
concentration 

Cch,o 
(g/mm3) 

0.15 0.1 Lognormal 

Effective chloride diffusion 
coefficient 

Dch 
(mm2/year)

109.68 0.1 Lognormal 

Threshold chloride 
concentration 

Cch,th 
(g/mm3) 

0.04 0.14 Lognormal 

Initial diameter of 
reinforcement 

dst0 
(mm) 

15.88 0.02 Lognormal 

Rate of corrosion 
rcorr 

(mm/year) 
0.0582 0.3 Lognormal 
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Table 5.4 Design variable and objective function values for Pareto solutions Ac,1, 
Ac,2, Ac,3, and Ac,4 in Figures 5.14(a) and (b) 

Pareto optimum solution Ac,1 Ac,2 Ac,3 Ac,4 

CINS 30 15 10 5 Objective 
function 
values E(tdelay) (years) 0.89 1.55 1.96 2.96 

ninsp 5 3 2 2 

c,0.5 0.11 0.024 0.024 0.072 

ts 0.77 0.77 0.77 0.77 

tinsp,1 2.50 3.40 3.92 4.94 

tinsp,2 3.50 4.82 6.24 7.12 

tinsp,3 4.50 6.95 - - 

tinsp,4 5.72 - - - 

tinsp,5 7.67 - - - 

Design 
variables Optimum 

inspection 
times 

(years) 

te 11.87 11.87 11.87 11.87 

 
Note: Inspection at time te is not accounted in the number of inspections and total 
inspection cost 
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Table 5.5 Variables for crack growth model 

Random variables Units Mean *COV 
Type of 

distribution 

Initial crack size, ao mm (in) 0.5 (0.02) 0.2 Lognormal 

Annual number of 
cycles, Nan 

cycles/year 0.8  106 0.2 Lognormal 

Stress range, Ssr MPa (ksi) 40 (5.81) 0.1 Weibull 

Material crack growth 
parameter, C 

 
3.54  10-11  

( †1.77  10-9) 
0.3 Lognormal 

Deterministic variable Value 

Material crack growth parameter, m 2.54 

*COV: coefficient of variation 

†1.77  10-9: material parameter for da/dN and ∆K in units of in/cycles and ksi in , 
respectively (see Equations (5.9) and (5.10)) 
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Table 5.6 Design variable and objective function values associated with Pareto 
optimum solutions in Figures 5.20(c) 

Pareto  
optimum solution 

Bf,1 Bf,2 Bf,3 Bf,4 Bf,5 Bf,6 Bf,7 

CINS 1.17 2.34 4.35 8.69 13.03 17.38 21.72
Objective 
function 
values E(tdelay) 

(years) 
13.21 9.66 7.09 4.55 3.62 3.15 2.86 

ninsp 1 2 1 2 3 4 4 

f,0.5 0.10 0.10 0.01 0.01 0.01 0.01 0.01 

tinsp,1 15.27 11.73 9.35 6.67 5.64 5.07 4.71 

tinsp,2 - 18.50 - 11.85 8.35 6.94 6.15 

tinsp,3 - - - - 13.51 9.60 7.93 

tinsp,4 - - - - - 14.76 10.60

Design 
variable

s 

tinsp 
(years) 

tinsp,5 - - - - - - - 
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Table 5.9 Objectives and design variables of cases for number of inspections and/or 
monitorings N = ninsp + nmon = 2  

1 2 3 4 
Case 

INS  INS INS  MON MON  INS MON  MON

Number of 
inspections 

ninsp 
2 1 1 0 

Number of 
monitorings 

nmon 
0 1 1 2 

Objective 
function 

E(tdelay) and CCOM = CINS + CMON 

tinsp,1 tinsp,1 tinsp,1 tmon,1 

tinsp,2 tmon,1 tmon,1 tmon,2 

f,0.5 f,0.5 f,0.5 tmd 

Design variables 

- tmd tmd - 
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Table 5.10 Variables for crack growth model of a joint between bottom plate and 
longitudinal plate 

Random variables Units Mean *COV 
Type of 

distribution 

Initial crack size, ao mm (in) 0.5 (0.02) 0.2 Lognormal 

Annual number of 
cycles, Nan 

cycles/year 1.0  106 0.2 Lognormal 

Stress range, Ssr MPa (ksi) 40 (5.81) 0.1 Weibull 

Material crack growth 
parameter, C 

 
3.54  10-11  

( †1.77  10-9) 
0.3 Lognormal 

Deterministic variable Value 

Material crack growth parameter, m 2.54 

*COV: coefficient of variation 

†1.77  10-9: material parameter for da/dN and ∆K in units of in/cycles and ksi in , 
respectively (see Equations (5.9) and (5.10)) 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 228

 
Table 5.11 Design variable and objective function values associated with Pareto 
optimum solutions in Figure 5.27 

 

 
 
 
 
 
 
 
 
 

Objective values Values of design variables 
Pareto 

optimum 
solution 

E(tdelay) 
(years) 

CCOM N
Optimum inspection and/or  

monitoring times (years) 0 5f , .  tmd  

(years)

tinsp,1     
Bs,1 5.67 4.35 1

7.47     
0.01 - 

tinsp,1 tinsp,2    
Bs,2 3.64 8.69 2

5.34 9.48    
0.01 - 

tinsp,1 tinsp,2 tinsp,3   
Bs,3 2.90 13.03 3

4.51 6.82 10.82   
0.01 - 

tinsp,1 tinsp,2 tinsp,3 tinsp,4  
Bs,4 2.49 17.38 4

4.11 5.61 7.73 11.81  
0.01 - 

tmon,1 tmon,2 tinsp,1   
Bs,5 1.45 27.69 3

3.03 5.68 11.49   
0.01 0.33 

tmon,1 tmon,2 tmon,3 tinsp,1  
Bs,6 0.99 33.90 4

2.58 4.21 6.68 12.59  
0.01 0.33 

tmon,1 tmon,2 tmon,3 tmon,4 tins,1  
Bs,7 0.74 39.44 5

2.19 3.50 5.10 7.79 13.46 
0.01 0.31 
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Table 5.12 Variables for crack growth model of a cover plate 

Deterministic variable Notation (Units) Value 

Material crack growth 
parameter 

M 3.0 

Flange thickness tf (mm) 32.0 

Cover plate thickness tcp (mm) 31.8 

Random variables 
Notation 
(Units) 

Mean *COV 
Type of 

distribution 

Initial crack size 
co  

(mm) 
0.5 0.2 Lognormal 

Annual number of 
cycles 

Nan  
(cycles/year) 

1.62  106 0.2 Lognormal 

Annual increase rate of 
number of cycles 

rcycle  

(%) 
2 0.1 Lognormal 

Stress range 
Ssr  

(MPa) 
13.78 0.1 Weibull 

Material crack growth 
parameter 

C 2.024  10-13 0.25 Lognormal 

Weld size  Z (mm) 16 0.1 Lognormal 

*COV : coefficient of variation 
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Figure 5.1 (a) Relation between the corrosion damage intensity and the probability 
of corrosion damage detection ; and (b) relation between the crack length and the 
probability of fatigue damage detection  
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Figure 5.2 Damage detection delay for (a) case 1: ts ≤ t < tinsp,1; (b) case 2: tinsp,1 ≤ t 
< tinsp,2; (c) case 3: tinsp,2 ≤ t < tinsp,3; and (d) case 4: tinsp,3 ≤ t ≤ tinsp,e  
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Figure 5.2 Damage detection delay for (a) case 1: ts ≤ t < tinsp,1; (b) case 2: tinsp,1 ≤ t 
< tinsp,2; (c) case 3: tinsp,2 ≤ t < tinsp,3; and (d) case 4: tinsp,3 ≤ t ≤ tinsp,e (continued) 
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Figure 5.3 Damage detection delay when inspection and monitoring are used (a) 
case 1: ts ≤ t < tinsp,1; (b) case 2: tinsp,1 ≤ t < tmon,1; (c) case 3: tmon,1 ≤ t < tmon,1 + tmd; 
and (d) case 4: tmon,1 + tmd ≤ t < te 
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Figure 5.3 Damage detection delay when inspection and monitoring are used (a) 
case 1: ts ≤ t < tinsp,1; (b) case 2: tinsp,1 ≤ t < tmon,1; (c) case 3: tmon,1 ≤ t < tmon,1 + tmd; 
and (d) case 4: tmon,1 + tmd ≤ t < te (continued) 
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Figure 5.4 Cross-sectional view and layout of top transverse reinforcement bars at 
end spans of E-17-HS (adapted from Akgül 2002) 
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Figure 5.5 Time-dependent reinforcement area of RC slab deck with (a) PDFs of 
reinforcement area Ast at every 10 years; (b) PDFs of corrosion initiation time and 
times when Ast = 0.95Ainit, 0.90Ainit, 0.85Ainit, and 0.80Ainit 
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Figure 5.6 Lognormal PDF of corrosion initiation time 
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Figure 5.7 Inspection: (a) effects of number of inspections and inspection quality 
on minimum expected corrosion damage detection delay; and (b) relation between 
minimum expected damage detection delay and total inspection cost 
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Figure 5.9 Monitoring: (a) effects of number of monitorings and monitoring 
duration on minimum expected corrosion damage detection delay; and (b) relation 
between minimum expected damage detection delay and total monitoring cost 
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Figure 5.11 (a) Bayesian updating of surface chloride concentration; and (b) 
corrosion initiation time based on updating of surface chloride concentration 
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Figure 5.12 Inspection: effects of updating of surface chloride concentration on (a) 
minimum expected corrosoin damage detection delay associated with c,0.5 = 0.03; 
and (b) optimum inspection plan for the number of inspections ninsp = 3 and c,0.5 = 
0.03 
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Figure 5.13 Monitoring: effects of updating of surface chloride concentration on 
(a) minimum expected corrosion damage detection delay associated with 
monitoring duration tmd = 0.5 year; (b) optimum inspection plan for the number of 
monitorings nmon = 3 and tmd = 0.5 year 
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Figure 5.14 (a) Pareto solution set of bi-objective optimization problem; and (b) 
inspection plans for solutions Ac,1, Ac,2, Ac,3, and Ac,4 in (a) 
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Figure 5.15 Schematic diagrams of the mid-ship section of a ship and the assumed 
location of cracks 
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Figure 5.16 (a) Time-variant crack length with PDFs of times when a = 10mm, 
20mm, 30mm, and 40mm; and (b) GEV PDF of fatigue damage occurrence time
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Figure 5.17 Expected probability of detection versus time after fatigue crack 
damage occurrence for f,0.5 = 0.01, f,0.5 = 0.03, and f,0.5 = 0.05 
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Figure 5.18 Effects of (a) number of inspections and (b) total inspection costs on 
minimum expected fatigue damage detection delay for f,0.5 = 0.01, f,0.5 =0.03, and 
f,0.5 = 0.05 
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Figure 5.19 Optimum inspection plans for number of inspections (a) ninsp = 1; (b) 
ninsp = 3; (c) ninsp = 5 
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Figure 5.20 (a) Pareto solution set and design space of tinsp,1 and f,0.5, for given 
ninsp = 1; (b) Pareto solution sets for design variables tinsp and f,0.5, and given ninsp = 
1, 2, 3, 4, and 5; (c) final Pareto solution set; and (d) optimum inspection plans for 
solutions Bf,1, Bf,2, Bf,4, and Bf,6 in (c) 
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Figure 5.20 (a) Pareto solution set and design space of tinsp,1 and f,0.5, for given 
ninsp = 1; (b) Pareto solution sets for design variables tinsp and f,0.5, and given ninsp = 
1, 2, 3, 4, and 5; (c) final Pareto solution set; and (d) optimum inspection plans for 
solutions Bf,1, Bf,2, Bf,4, and Bf,6 in (c) (continued) 
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Figure 5.21 Comparison between Pareto solution sets based on same type and 
different types of inspections for number of inspections (a) ninsp = 2; (b) ninsp = 3 
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Figure 5.22 Pareto solution set of bi-objective optimization problem with design 
variables tinsp, f,0.5 , and ninsp (a) without discount rate of money; (b) with discount 
rate of money rdis = 3 %/year. 
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Figure 5.23 (a) Four possible cases for number of inspections and/or monitorings 
ncom = 2; and (b) Pareto optimal solution sets associated with four possible cases, 
and final Pareto solution sets for ncom = 2 
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Figure 5.24 Flowchart to find the final Pareto optimal solution set PS 
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Figure 5.25 GEV PDF of fatigue damage occurrence time 
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Figure 5.26 Number of inspections and/or monitorings N = 2, (a) Pareto solution 
sets PSN,n for cases I, II, III, and IV; (b) Pareto solution set PSN; (c) combined 
inspection / monitoring plans for solutions As,1, As,2 and As,3 in (b) 
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Figure 5.27 Pareto solution set PSN for (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; 
and (e) N = 5, and (f) final Pareto solution set PS 
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Figure 5.27 Pareto solution set PSN for (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; 
and (e) N = 5, and (f) final Pareto solution set PS (continued) 
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Figure 5.28 Combined inspection / monitoring plans for solutions Bs,1 to Bs,7 in 
Figure 5.27(f) 
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CHAPTER 6 

 

 COST-BASED OPTIMUM INSPECTION AND MONITORING 

PLANNING  

 

6.1 Introduction 

Inspection and monitoring are essential to detect the defects and predict the 

remaining life of deteriorating structures [Chang et al. 2003, Moan 2005, Ellingwood 

2005]. Inspection is performed at uniform or non-uniform time intervals in order to 

find the location and extent of damage and apply a timely maintenance [Cramer et al. 

1992]. Effective and timely inspection and maintenance can extend the lifetime of a 

structural system while preventing unexpected costly failure. For this reason, studies 

for developing methodologies to establish optimum inspection and repair strategies 

have been performed [Madsen et al. 1991, Mori and Ellingwood 1994b, Frangopol et 

al. 1997b, Estes and Frangopol 1999, Enright and Frangopol 1999, Estes and 

Frangopol 2001, Garbatov et al. 2001].  

This chapter proposes a probabilistic approach for cost-based optimum 

inspection and monitoring scheduling. The proposed approach is illustrated by using 

a fatigue sensitive ship hull structure. The inspection schedule is the solution of an 

optimization problem to minimize the expected total cost including the costs of 

inspections or monitorings and the expected failure cost. The solution of this 

problem provides optimum inspection times and quality of inspections. Optimum 
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monitoring starting times and monitoring durations are obtained by solving the 

optimization for monitoring scheduling. The time-based failure criterion is defined 

using time-based safety margin defined as the difference between the time for 

damage to reach the critical fatigue crack size and the damage detection time. This 

criterion is based on the assumption that appropriate repair and retrofit methods are 

applied immediately after the crack is detected. Uncertainties associated with 

prediction of damage occurrence time and time to reach the critical fatigue crack size 

are considered by using Monte Carlo simulation. Damage detection time and damage 

detection delay are formulated using the event tree model. This formulation 

considers the uncertainties associated with fatigue crack damage occurrence / 

propagation and damage detection. Effects of the failure cost on inspection and 

monitoring scheduling are also studied.  

 

6.2 Inspection and Monitoring of Steel Structures 

Steel structures are usually inspected at uniform or non-uniform time periods to 

detect damage and apply a timely maintenance. The quality of inspection method 

affects optimum inspection and repair strategy to minimize the expected life-cycle 

cost [Frangopol et al. 1997b]. The quality of inspection method to detect fatigue 

crack is generally represented by the probability of detecting an existing defect size 

[Madsen et al. 1991, Mori and Ellingwood 1994a and 1994b, Chung et al. 2006]. 

The probability of detection considering crack size and inspection quality has been 
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studied by Packman et al. (1969), Berens and Hovey (1981), and Cramer et al. 

(1992).  

During the past two decades, powerful damage detection techniques including 

structural health monitoring (SHM) have been developed and applied. The following 

inspection methods are commonly used to detect fatigue crack: visual inspection, 

dye penetrant testing, magnetic particle testing, ultrasonic testing, acoustic emission 

testing and X-radiographic testing. Appropriate inspection methods should be 

selected by considering the type of defect (e.g., surface crack, embedded crack), 

probability of detection, and inspection cost. For example, magnetic particle testing 

provides reliable outcomes for surface crack but not for embedded crack [Cartz 

1995]. Ultrasonic testing has higher probability of detection than other inspection 

methods for embedded crack. However, this type of testing is considerably 

expensive [Fisher et al. 1998, Miki 2007].  

SHM has been treated as an efficient tool to assess structural integrity and the 

nature of damage in a structure [Chang et al. 2003, Kulkarni and Achenbach 2008]. 

The main advantages of SHM are: (a) lead to timely damage detection through 

continuous and automating inspection process [Boller and Buderath 2007], (b) 

provide additional information to reliably assess and predict the structural 

performance [Kwon and Frangopol 2010]. For monitoring fatigue crack growth in 

steel structures, surface mountable eddy-current sensor, surface acoustic wave sensor, 

and electrochemical fatigue sensor can be useful [Papazian et al. 2007].  
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6.3 Cost-Based Optimum Inspection and Monitoring Planning For Steel 

Structures Subjected to Fatigue 

Fatigue cracks may not threaten structural integrity of steel structures with high 

degree of structural redundancy [White and Ayyub 1987, Rolfe et al. 1993, Clark 

1991]. However, any crack should be detected as early as possible, and appropriate 

repair and retrofit methods have to be applied immediately, in order to prevent 

unexpected structural failure [Fisher et al. 1998, Glen et al. 2000]. For this reason, 

fatigue cracks must be detected and repaired before the time for cracks to reach 

critical sizes [Glen et al. 2000, Dexter et al. 2003].  

 

6.3.1 Crack Size-Based and Time-Based Safety Margins 

A fatigue sensitive structure has a safety margin during a fatigue damage process. 

This safety margin depends on the resistance to fatigue crack growth. Increase of the 

fatigue crack growth resistance leads to larger safety margin during a fatigue damage 

process. This safety margin can be expressed using crack-size and time. A crack 

size-based safety margin amar during a fatigue damage process is [Kim and 

Frangopol 2011e] 

mar max mina a a   (6.1)

where amin = minimum detectable crack size, and amax = maximum crack size. The 

critical state of fatigue damage is referred to as the state when the crack size reaches 
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amax, as mentioned in Equation (5.19). A time-based safety margin tmar is defined 

herein as [Kim and Frangopol 2011e] 

mar cr init t t   (6.2)

where tini = fatigue damage initiation time, and tcr = time when fatigue damage 

reaches the critical state. Figure 6.1 illustrates both crack size-based and time-based 

safety margins, and the relation between them. The minimum detectable crack size 

amin and maximum crack size amax are associated with fatigue damage initiation time 

(i.e., tini) and time for crack to reach the maximum crack size amax (i.e., tcr), 

respectively. If damage occurs at time tini and is detected at time tdet, the damage 

detection delay tdelay is tdet – tini (see Figure 6.1). In order to apply the appropriate 

maintenance action, damage should be detected before time tcr. In other words, the 

damage detection delay tdelay has to be less than the time-based safety margin tmar.  

Fatigue crack growth over time is uncertain. Therefore, crack size-based and 

time-based safety margins are uncertain. Figure 6.2(a) shows the PDFs of the 

minimum crack size amin at time tini, maximum crack size amax at time tcr , and crack 

size adet at time tdet when the damage is detected. The PDF of crack size-based safety 

margin amar during a fatigue damage process can be obtained using the PDFs of 

crack sizes amin and amax. The PDFs of time (i.e., tini, tdet, tcr) for fatigue crack to reach 

a specific crack size are illustrated in Figure 6.2(b). The time-based safety margin 

tmar can be represented by its PDF considering uncertainites associated with times tini 

and tcr. In this study, the time-based safety margin is used to formulate the failure 
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criterion.   

 

6.3.2 Expected Damage Detection Time and Damage Detection Delay 

Inspection methods are not perfect. In order to consider the probability of detection 

of an inspection method, the event tree model can be used as shown in Figure 5.2. 

Based on this model, expected damage detection time and delay can be formulated. 

When ninsp inspections are used to detect the damage, and damage occurs in the time 

interval 1insp ,i ini insp ,it t t   , the expected damage detection delay delayt is 

 
1

1
1

1
inspn k

delay insp , j insp ,k insp ,k ini
k i j

t P P t t



 

         
   

     for 1insp ,i ini insp ,it t t    (6.3)

where Pinsp,k = probability of detection of kth inspection, tinsp,k = kth inspection time. 

Furthermore, based on Equation (6.3) and the relation between damage detection 

time tdet and delay tdelay (i.e., tdelay = tdet – tini) in Figure 6.1, the expected damage 

detection time dett  becomes 

det delay init t t   (6.4)

Under the assumption of no damage detection delay during monitoring, the 

expected damage detection time dett  is formulated based on Equation (6.4) as 

det mon,it t  for 1mon,i md ini mon,it t t t     (6.5a)

det init t  for mon,i ini mon,i mdt t t t    (6.5b)

where tmon,i = ith monitoring starting time. If the damage occurs before tmon,i, dett  = 

tmon,i. When the damage occurs during monitoring, dett  = tini. Furthermore, the 
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relation between dett  and delayt  is det delay init t t  . 

 

6.3.3 Time-Based Probability of Failure 

If appropriate repair and/or retrofit methods are applied immediately after the 

damage is detected, the time-based failure criterion can be defined as  

tcr – dett  < 0 (6.6)

where tcr = time when fatigue damage reaches the critical state (see Figure 6.1 and  

and Equation (6.2)), and dett  = expected damage detection time. This failure 

criterion is also expressed in terms of the time-based safety margin tmar and the 

expected damage detection delay delayt  as  

tmar – delayt  < 0 (6.7)

Considering the uncertainties associated with damage occurrence, propagation, and 

detection, tcr, dett , tmar, and delayt  in Equations (6.6) and (6.7) are treated as random 

variables. Therefore, the time-based probability of failure just before damage 

detection is   

pF = P [tcr – dett  < 0] = P [tmar – delayt  < 0] (6.8)

 

6.3.4 Expected Total Cost 

The expected total cost E(Ctotal) includes the initial cost, the inspection (or 

monitoring) cost, the expected maintenance cost, and the expected failure cost 

[Frangopol et al. 1997b]. The failure cost represents the monetary loss due to a 
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structural failure, and the expected failure cost E(CFAIL) is [Frangopol et al. 1997b]  

E(CFAIL) = pF  CFAIL (6.9)

where pF = time-based probability of failure, and CFAIL = expected monetary loss due 

to structural failure. Estimation of CFAIL should consider in a rational way the cost of 

design and construction of a new structure, expected cost of human injuries, and user 

costs, among others [Estes and Frangopol 2005]. In this study, pF defined in 

Equation (6.8) is used for estimating the expected failure cost E(CFAIL). An approach 

to establish an optimum inspection or monitoring schedule is based on a formulation 

with the objective of minimizing the expected total cost E(Ctotal). In this study, 

E(Ctotal) is estimated as  

E(Ctotal) = CINS + E(CFAIL)  for inspection  (6.10a)

E(Ctotal) = CMON + E(CFAIL) for monitoring (6.10b)

where CINS = total inspection cost (see Equation (5.29)), and CMON = total inspection 

cost (see Equation (5.31)). In this chapter, αins , Cmon,ini and Cmon,an in Equation (5.28) 

and (5.30) are assumed 5, 10 and 20, respectively. The detail computational 

procedure associated with the approach proposed in this chapter is provided in 

Figure A.5. 

 

6.4 Application to Ship Hull Structures Subjected to Fatigue 

The proposed approach is applied to a ship hull structure subjected to fatigue. The 

intersection of longitudinal stiffeners with transverse web frames (see Figure 6.3(a)) is 
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in general the critical location with the highest priority for inspection and repair 

[Dexter et al. 2003]. As shown in Figure 6.3(b), the fatigue crack in the bottom hull 

plate can initiate in the fillet weld between hull plating and transverse frame, and the 

crack growth model is based on semi-elliptical shape.  

 

6.4.1 Time-Dependent Crack Growth  

In order to predict the crack size in the critical location in Figure 6.3, Equation (5.11) 

is used. The geometry function Y(a) (see Equation (5.9)) for a semi-elliptical shape is 

expressed as [Madsen et al. 1991] 

           e s t w gY a Y a Y a Y a Y a Y a      (6.11)

where Ye(a) = crack shape factor =  
0 51 65

1 0 4 59 2
..

. . a / c


    where a = depth crack 

size, c = length crack size, Ys(a) = front face factor =  0 98 0 16 2. . a / c , Yt(a) = 

finite thickness correction factor =    2
1 0 0 21 0 14hp hp. . a / t . a / t  , Yw(a) = finite 

width correction factor = 1.0, Yg(a) = stress gradient factor = 

 
10 249

1 1 0 36
.

tm hpK / . a / t


   where thp = hull plating thickness = 30 mm, Ktm = 

stress concentration factor = 3.475. The relation between a and c is assumed as 

0 9462 2 59 .c . a  . All necessary data to predict depth crack size a are provided in 

Table 6.1. In this application, the initial depth crack size ao is assumed lognormally 

distributed with mean value = 0.5 mm [Chung et al. 2006] and coefficient of 

variation (COV) = 0.2. Material crack growth parameter C is considered to be 

lognormally distributed with mean value = 2.3  10-12 [BS7910 2005], and COV = 
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0.3. The stress range Ssr is treated as a random variable with a Weibull PDF, and  

the parameter m in Equation (5.8) is assumed to be deterministic m = 3.0 [Madsen et 

al. 1991]. Increase rate of number of cycles rcycle in Equation (5.11) is not considered 

in this application.  

Figure 6.4(a) shows the PDF of the damage initiation time tini, defined as the 

time when the fatigue crack depth size reaches 1mm. The mean and standard 

deviation of tini are 4.25 and 2.79 years, respectively. The PDF of time tcr for the 

depth crack size to reach 20 mm is shown in Figure 6.4(b). Figures 6.4(a) and 6.4(b) 

are obtained by Monte Carlo simulation with 100,000 samples. In this chapter, the 

fatigue depth crack size of 1.0 mm serves as the crack damage criterion (i.e., amin = 1 

mm in Equation (5.19)), and the critical depth crack size amax in Equation (5.19) is 

assumed 20 mm. Based on the PDFs in Figures 6.4(a) and 6.4(b), the PDF of 

time-based safety margin tmar = tcr – tini is obtained as shown in Figure 6.5. In order 

to find the probability of time to failure as indicated in Equation (6.8), the PDF of tcr 

(or tmar) is used. The inspection times, number of inspections, and detectability of an 

inspection method affect the uncertainties associated with dett  (or delayt ) in 

Equations (6.3) and (6.4). 

 

6.4.2 Optimum Inspection Schedules to Minimize Expected Total Cost 

Inspection scheduling is the solution of an optimization problem with the objective 

of minimizing the expected total cost E(Ctotal) as follows: 
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Find tinsp = {tinsp,1, tinsp,2, … , tinsp,ninsp}   (6.12)

to minimize E(Ctotal) (6.13)

such that 1insp ,i insp ,i-1t t   year (6.14)

given ninsp, 0 5f , . , CFAIL , and PDFs of tini and tcr    (6.15)

where tinsp = vector consisting of design variables of inspection times, and tinsp,i = ith 

inspection time (years). As indicated in Equation (6.14), the time interval between 

inspections should be at least one year. The number of inspections ninsp, 0 5f , . , and 

monetary loss due to structural failure CFAIL are given (see Equation (6.15)). The 

PDFs of tini and tcr are provided in Figures 6.4(a) and 6.4(b), respectively. The 

optimization toolbox provided in MATLAB version R2009a [MathWorks Inc. 2009] 

was used to solve this problem. In order to check if the solution from the 

optimization toolbox of MATLAB is a global minimum, NSGA-II [Deb et al. 2002] 

was used. It should be noted that the discount rate of money is not considered to 

estimate the expected total cost E(Ctotal) in this application. 

 

Effect of inspection quality on optimum inspection scheduling 

As mentioned previously in chapter 5, 0 5f , .  is the fatigue damage intensity at 

which the inspection method has a 50% probability of detection, and represents the 

quality of inspection. The optimum inspection schedules associated with 0 5f , .  = 

0.01, 0.03, and 0.05 are provided in Table 6.2, when ninsp = 2, and CFAIL = 1,000. If 
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two inspections with 0 5f , .  = 0.05 are used to detect fatigue crack damage, the 

inspections should be performed at 7.23 and 15.32 years. In this case, the associated 

time-based probability of failure pF and expected total cost E(Ctotal) are 0.0272 and 

32.10, respectively. If the inspection method with 0 5f , .  = 0.01 is used instead of 

0 5f , .  = 0.05, the time-based probability of failure pF will decrease from 0.0272 to 

0.001, and the expected total cost E(Ctotal) will be reduced by 70% (i.e., from 32.10 

to 9.69), even though the inspection cost for 0 5f , .  = 0.01 is larger than 0 5f , .  = 

0.05 (see Equation (5.28)). 

Figure 6.6 shows the PDFs of the expected damage detection delay delayt , 

time-based safety margin tmar (i.e., tcr – tini), and difference between tmar and delayt  

for the optimum inspection schedule tinsp,1 = 4.66 years and tinsp,2 = 12.49 years as 

indicated in Table 6.2. pF is defined herein as the probability that tmar – delayt  is less 

than 0 as indicated in Equation (6.7). The area under the PDF of tmar – delayt  below 0 

in Figure 6.6 is 0.001. Figure 6.7(a) shows the PDFs of delayt  associated with 0 5f , .  

= 0.01 and 0.05. The mean values of delayt  for 0 5f , .  = 0.01 and 0.05 are 6.12 and 

9.83 years, respectively, as shown in Table 6.2. The mean of the expected damage 

detection time dett  for 0 5f , .  = 0.01 and 0.05 is 10.31 and 14.02 years, respectively 

(see Table 6.2). Figure 6.7(a) indicates that the PDF of delayt  shifts to the right as 

0 5f , .  increases from 0.01 to 0.05. The PDF of tmar in Figure 6.6 is independent of 

0 5f , . . Therefore, the area under the PDF of tmar – delayt  below 0 for 0 5f , .  = 0.01 is 

less than the area associated with 0 5f , .  = 0.05 (see Figure 6.7(b)). From these 
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results, it can be quantified how the quality of inspection affects the time-based 

probability of failure by changing the expected damage detection delay. 

 

Effect of number of inspections on optimum inspection scheduling 

Table 6.3 provides the optimum inspection schedules for number of inspections ninsp 

= 1, 3 and 5, when CFAIL = 1,000 and 0 5f , .  = 0.03. For one inspection, the optimum 

inspection time is 10.82 years. If five-time inspection is available to detect damage, 

the inspections should be applied at 3.28, 7.47, 11.39, 14.89 and 18.07 years (see 

Table 6.3). The PDFs of delayt  and tmar – delayt  associated with the optimum 

solutions for ninsp = 1 and 5 are shown in Figure 6.8. As the number of inspections 

ninsp increases from 1 to 5, the PDF of delayt  shifts to the left, and both the mean and 

standard deviation are reduced as shown in Figure 6.8(a). Since the time-based 

safety margin tmar is not affected by the number of inspections, the increase of ninsp 

from 1 to 5 shifts the PDF of tmar – delayt  to the right, and reduces the dispersion of 

the PDF of tmar – delayt . As a result, the increase of ninsp leads to the reduction of area 

under the PDF of tmar – delayt  below 0 (i.e., reduction of Pfail) as shown in Table 6.3 

and Figure 6.8(b). 

 

Optimum number of inspections and inspection quality 

From Tables 6.2 and 6.3, and Figures 6.7 and 6.8, it can be seen that reduction of pF 

results from the increase of number of inspections and/or inspection quality. This 
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increase requires additional inspection cost CINS. Therefore, the number of 

inspections and inspection quality should be considered as design variables of an 

optimization problem for minimizing the expected total cost E(Ctotal).  

Table 6.4 provides the expected total costs E(Ctotal) consisting of the inspection 

cost CINS and the expected failure cost E(CFAIL) for different number of inspections 

ninsp = 1 to 5, when 0 5f , .  = 0.01 and CFAIL = 1,000. Increase of the number of 

inspection ninsp leads to both reduction of E(CFAIL) and increase of CINS. The optimum 

inspection schedule with the minimum expected total cost E(Ctotal) has two-time 

inspection with 0 5f , .  = 0.01 (see Table 6.4). The associated inspection schedule is 

provided in Table 6.2. If the three inspection methods associated with 0 5f , .  = 0.01, 

0.03 and 0.05 are used to detect fatigue crack damage, the optimum number of 

inspections for different values of 0 5f , .  are presented in Figure 6.9. The optimum 

inspection schedules of solutions I1, I2 and I3 (for CFAIL = 100 in Figure 6.9(a)), II1, 

II2 and II3 (for CFAIL = 1,000 in Figure 6.9(b)), and III1, III2 and III3 (for CFAIL = 

10,000 in Figure 6.9(c)) are provided in Table 6.5. For instance, when CFAIL = 1,000, 

optimum solution II2 associated with 0 5f , .  = 0.03 requires inspections at 3.74, 8.29 

and 17.34 years, and its associated minimum expected total cost is 9.95 as shown in 

Table 6.5 and Figure 6.9(b). Among II1, II2 and II3, II3 has the smallest expected total 

cost E(Ctotal) = 8.04 and smallest time-based probability of failure pF = 6.82  10-4. It 

means that solution II3 is the optimum solution for CFAIL = 1,000. Furthermore, the 

optimum cost-based solutions for CFAIL = 100 and 10,000 are I2 in Figure 6.9(a) and 
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III3 in Figure 6.9(c), respectively.  

 

6.4.3 Optimum Monitoring Schedules to Minimize Expected Total Cost 

The formulation of an optimization problem for monitoring scheduling is as follows: 

Find tmon = {tmon,1, tmon,2, … , tmon,nmon}   (6.16)

to minimize E(Ctotal) (6.17)

such that   1mon,i mon,i-1 mdt t t    year (6.18)

Given nmon, tmd, CFAIL , and PDFs of tini and tcr    (6.19)

where tmon = vector of design variables of monitoring starting times, tmon,i = ith 

monitoring starting time (years), and tmd = monitoring duration (years). In this 

optimization problem, the objective is minimization of the expected total cost E(Ctotal) 

defined in Equation (6.10b). The time interval between monitoring starting time of 

ith monitoring (i.e., tmon,i ) and monitoring ending time of (i –1)th monitoring (i.e., 

tmon,i-1 + tmd) is assumed to be at least 1 year as a constraint (see Equation (6.18)). 

Similarly to the formulation of optimum inspection scheduling, the number of 

monitorings nmon, and monitoring duration tmd, failure cost CFAIL and the PDFs of tini 

and tcr are given.  

The result of the optimization problem to minimize E(Ctotal) for different number 

of monitorings nmon = 1 to 5 and CFAIL = 1,000 is shown in Figure 6.10(a). 
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Monitoring scheduling of optimum solutions IV1, IV2 and IV3 associated with 

monitoring duration tmd = 0.1, 0.3 and 0.5 year, respectively are illustrated in Figure 

6.10(b). Solution IV3 requires the minimum E(Ctotal) for given monitoring duration 

tmd = 0.5 year, and needs two monitorings at tmon,1 = 3.28 and tmon,2 = 11.58 years. 

Among optimum solutions IV1, IV2 and IV3, pF associated with solution IV3 is the 

smallest (i.e., 3.01  10-5), but has the highest E(Ctotal) of 30.03 (see Figure 6.10(b)). 

This is because increasing the monitoring duration tmd leads to reduction of the 

expected failure cost E(CFAIL), but requires higher monitoring cost. As a result, the 

optimum solution for CFAIL = 1,000 is solution IV1 with tmd = 0.1 year. The results of 

the optimizations for given CFAIL = 10,000 are presented in Figure 6.11(a). The 

solutions V1, V2 and V3 are associated with monitoring durations tmd = 0.1, 0.3 and 

0.5 year, respectively. The monitoring schedules of solutions V1, V2 and V3 are 

provided in Figure 6.11(b). Figure 6.11 indicates that solution V1 has the minimum 

expected total cost of 18.01, and the associated optimum monitoring duration and 

number of monitorings are 0.1 year and 3, respectively. 

 

6.5 Conclusions 

A probabilistic approach to establish an optimum cost-based inspection and 

monitoring scheduling of deteriorating structures has been proposed. This approach 

is applied to a fatigue sensitive structure. The total expected cost includes the costs 

of inspection and failure. Under the assumption that repair and retrofit methods are 
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applied immediately after damage is detected, the failure criterion is formulated 

using damage detection time and time for damage to reach the critical state. The 

optimum scheduling provides the optimum inspection times and quality of 

inspection for a given cost of failure. The optimum monitoring starting times and 

monitoring durations are also obtained by the optimization process. The following 

conclusions are drawn: 

1. Increasing the number of inspections and/or inspection quality leads to (a) 

reductions of both the expected damage detection delay and time-based 

probability of failure, and (b) increase of inspection cost.  

2. The failure cost affects significantly the optimum scheduling of inspections and 

monitorings. A higher failure cost leads to an optimum solution requiring more 

inspections and monitorings. Therefore, for practical use of the proposed 

approach, rational estimation of the failure cost is needed considering various 

factors such as loss of life, reconstruction, and users’ inconvenience.  

3. The failure criterion is associated with the time-based safety margin. This safety 

margin considers uncertainty associated with the time for damage to reach a 

critical level. Alternatively, the failure criterion can be associated with the crack 

size-based safety margin. Further studies are necessary to compare the effects of 

these two approaches on inspection and monitoring planning.  

4. For use of the proposed approach to other deteriorating processes such as 

corrosion, fatigue-induced corrosion, and fracture, future effort is needed to 
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establish a methodology to consistently deal with lack of knowledge and data 

associated with deterioration mechanisms, inspection and monitoring methods, 

and time-dependent performance prediction. Furthermore, for more reliable 

planning, the Bayesian updating process after each inspection or monitoring 

should be considered in future studies. 
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Table 6.1 Variables for crack size prediction  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Random variables 
Notation  
(Units) 

Mean COV 
Type of 

distribution 

Initial crack size 
ao  

(mm) 
0.5 0.2 Lognormal 

Annual number of 
cycles 

Nan 

(cycles/year) 
5  105 0.2 Lognormal 

Stress range 
Ssr  

(MPa) 
20 0.1 Weibull 

Material crack growth 
parameter 

C 2.3  10-12 0.3 Lognormal 

Deterministic variable Notation (Units) Value 

Material crack growth 
parameter 

m 3.0 
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Table 6.2 Design variable and objective values associated with optimum solutions 
for f,0.5 = 0.01, 0.03, and 0.05 

0 5f , .  0.01 0.03 0.05

tinsp,1 4.66 5.99 7.23Values of  
design variables 

tinsp (years) tinsp,2 12.49 14.02 15.32

Objective value  E(Ctotal) 9.69 14.44 32.10

Time-based probability of failure pF 1.00  10-3 7.90  10-3 2.72  10-2

Mean of delayt  (years) 6.12 8.38 9.83

Mean of dett  (years) 10.31 12.57 14.02

Number of 
inspections ninsp 

2 2 2
Given 

CFAIL 1,000 1,000 1,000
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Table 6.3 Design variable and objective function values associated with optimum 
solutions for number of inspections ninsp = 1, 3 and 5 

Number of inspections ninsp 1 3 5 

tinsp,1 10.82 3.74 3.28 

tinsp,2 - 8.29 7.47 

tinsp,3 - 17.34 11.39 

tinsp,4 - - 14.89 

Values of  
design variables 

tinsp (years) 

tinsp,5 - - 18.07 

Objective value  E(Ctotal) 212.57 9.95 16.37 

Time-based probability of failure pF 2.09  10-1 1.40  10-4 2.01  10-5 

Mean of delayt  (years) 10.78 7.52 6.08 

Mean of dett  (years) 14.96 11.73 10.27 

f,0.5 0.03 0.03 0.03 
Given 

CFAIL 1,000 1,000 1,000 
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Table 6.4 Costs as function of number of inspections ninsp = 1 to 5  

Given Number of 
inspections 

ninsp 

Total  
expected cost 

E(Ctotal) 

Inspection cost 
CINS 

Expected  
failure cost 

E(CFAIL) 0 5f , .  CFAIL 

1 110.45 4.35 106.10 0.01 1,000 

2 9.69 8.69 0.9999 0.01 1,000 

3 13.05 13.03 0.01991 0.01 1,000 

4 17.39 17.38 0.009807 0.01 1,000 

5 21.73 21.72 0.009786 0.01 1,000 
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Figure 6.2 (a) PDFs of crack size amin, adet, amax; and (b) PDFs of times tini, tdet, tcr 
 
 
 
 
 



www.manaraa.com

 291

 
(a) CL OF MID SECTION

LONGITUDINAL STIFFENERHULL PLATING

TRANSVERSE FRAME

LONGITUDINAL 
LOADING AND 
UNLOADING 

DETAIL II

DETAIL I

DETAIL I

 
(b) 

TRANSVERSE FRAME

HULL PLATING

FILLET WELD

LONGITUDINAL 
LOADING AND 
UNLOADING 

CRACK DEPTH SIZE, aCRACK LENGTH SIZE, c

DETAIL II

 

 
Figure 6.3 (a) Schematic representation of the mid-ship section of a ship; and (b)
detail of the assumed crack location 
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Figure 6.4 PDFs of (a) fatigue damage initiation time; and (b) time to reach the
critical crack size 
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Figure 6.5 PDF of time-based safety margin 
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Figure 6.6 PDFs of delayt , tmar, and tmar – delayt  associated with the optimum 

solution for 0 5f , .  0.01 in Table 6.2 
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Figure 6.7 PDFs of (a) delayt , and (b) tmar – delayt associated with the optimum 

solutions for 0 5f , .  0.01 and 0.05 in Table 6.2 
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Figure 6.8 PDFs of (a) delayt  and (b) tmar – delayt associated with the optimum 

solutions for number of inspections ninsp = 1 and 5 in Table 6.3 
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Figure 6.9 Expected total cost as function of number of inspections ninsp = 1 to 5 for 

(a) CFAIL = 100, (b) CFAIL = 1,000, and (c) CFAIL = 10,000 
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Figure 6.9 Expected total cost as function of number of inspections ninsp = 1 to 5 for 

(a) CFAIL = 100, (b) CFAIL = 1,000, and (c) CFAIL = 10,000 (continued) 
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Figure 6.10 (a) Expected total cost as function of number of monitorings nmon = 1 to 

5 for CFAIL = 1,000, and (b) monitoring schedules for optimum solutions IV1, IV2 and 

IV3 in (a) 
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Figure 6.11 (a) Expected total cost as function of number of monitorings nmon = 1 to 5 

for CFAIL = 10,000, and (b) monitoring schedules for optimum solutions V1, V2 and V3

in (a) 
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CHAPTER 7 

 

 INSPECTION AND REPAIR PLANNING TO EXTEND 

LIFETIME OF STRUCTURES  

 

7.1 Introduction 

The lifetime of a structure can be extended through effective and timely inspection / 

repair. Optimization process has been considered as an essential tool to establish the 

inspection / repair planning during given target lifetime [Frangopol 2011]. In order 

to find the inspection / repair planning from an optimization process, damage 

initiation and propagation under uncertainty should be predicted in a rational way. 

The probability of damage detection can affect the repair action [Mori and 

Ellingwood 1994a]. Even though the damage is detected, the repair can be delayed 

according to availability of funds and/or importance of a structural component [Estes 

and Frangopol 2001]. Therefore, effects of uncertainties associated with damage 

initiation and propagation, and probabilities of damage detection and repair on 

structural performance should be considered to optimize the lifetime inspection / 

repair strategy.  

This chapter presents a probabilistic approach to establish an optimum 

inspection / repair strategy for RC structures under pitting corrosion. This strategy is 

the solution of a bi-objective optimization problem under uncertainty considering the 

maximization of expected extended lifetime and minimization of expected total cost. 

The formulation of extended lifetime for a given number of inspections is based on a 
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decision tree analysis. In this decision tree, probabilities of damage detection and 

repair are considered. The relation among damage intensity, quality of an inspection 

method and probability of damage detection is expressed as a damage detectability 

function. The decision maker’s willingness to make a repair after pitting corrosion 

detection is considered as the probability of repair. This is categorized into the 

following repair approaches: (a) delayed, (b) linear and (c) proactive. The solution 

obtained from the optimization problem provides the optimum inspection time for a 

given number of inspections. The effects of inspection quality, repair approach 

and/or number of inspections on the expected extended lifetime are investigated.  

 

7.2 Lifetime Prediction of Deteriorating RC Structures  

The performance of RC structures can deteriorate due to shrinkage, inadequate 

pouring procedures, freeze and thaw cycles, corrosion of reinforcement, fatigue and 

degradation of steel and concrete [Ellingwood 2005]. Among these stressors resulting 

in deterioration of RC structures, corrosion is considered as the most costly 

deterioration mechanism [Chaker 1992, Weyers et al. 1993, Kirkpatrick et al. 2002, 

NCHRP 2005). The deterioration process due to corrosion generally consists of the 

following two steps: corrosion initiation and corrosion propagation [Tuutti 1982, 

Al-Tayyib et al. 1988, Dhir et al. 1989, Stewart and Rosowsky 1998]. Based on the 

degree of damage (e.g., damage intensity, percent of cumulative damage, remaining 

reinforcement area) or structural capacity (e.g., flexure or shear strength), service life 
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of RC structures can be predicted.  

The deteriorating mechanisms of RC structures are highly dependent on the 

environment and material properties under uncertainty. In order to predict the service 

life of RC structures considering uncertainties in a rational way, a probabilistic 

approach has to be applied [Frangopol et al. 1997a and 1997b, Stewart and Rosowsky 

1998, Enright and Frangopol 1998a, Stewart 2004, Li et al. 2005]. Figure 7.1 

illustrates the deterioration profile of a RC structure under uncertainty. By considering 

the uncertainties associated with parameters of corrosion deterioration model, PDFs 

of corrosion and crack initiation times (i.e., tcorr and tcrack, respectively) can be 

obtained. This figure also indicates the PDF of service life tlife defined as the time 

when the damage of a RC structure reaches its threshold.  

 

7.3 Extended Lifetime with Inspection / Repair 

Lifetime of a deteriorating structure can be extended through appropriate repair 

action after damage detection. In order to predict the lifetime of a deteriorating 

structure considering effects of inspections / repair, a decision tree model can be 

used. This model represents all the possible events. Every event has a particular 

outcome, and every path to the associated outcome has a probability of occurrence.  

Figure 7.2(a) shows the decision tree to predict the lifetime of a deteriorating 

structure when an inspection is used at time tinsp,1. Decision tree begins with a 

decision node (i.e., denoted as a gray square node in Figure 7.2(a)), at which there 
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are alternatives. The decision tree of Figure 7.2(a) has two alternatives: inspection is 

performed after the time associated with the initial service life t(0)
life (i.e., tinsp,1 > 

t(0)
life), and inspection performed before the initial service life (i.e., tinsp,1 ≤ t(0)

life). The 

first case is associated with a late inspection (branch 1 in Figure 7.2(a)). In the 

second case, there is a chance node (i.e., denoted as a black circle in Figure 7.2(a)) 

associated with damage detection and no detection (branch 2). The probabilities of 

detection and no detection are Pinsp,1 and 1 – Pinsp,1, respectively. If damage is 

detected (branches 3 and 4), decision maker should decide whether immediate repair 

is necessary. The decision maker’s willingness to make a repair can be quantified by 

the probability of repair [Estes and Frangopol 2001]. The probability of repair is 

defined as the conditional probability that repair is made immediately after damage 

is detected. Considering the probability of repair, there are two events (i.e., repair 

(branch 4) and no repair (branch 3)) after damage detection. As a result, the decision 

tree model has the four branches shown in Figure 7.2(a). Branch 4 represents the 

event of damage detection and repair. The associated lifetime and probability are 

t(1)
life and Pinsp,1  Prep,1 , respectively, where Prep,1 is the probability of repair after the 

first inspection. Figure 7.2(b) illustrates the lifetimes of branches 1 to 4 in Figure 

7.2(a). Considering the probabilities of inspection and repair, and the lifetime 

associated with all the branches, the extended lifetime lifet  is defined as  

lifelife tt )0(  for tinsp,1 > t(0)
life (7.1a)
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   
liferepinsp

liferepinsplifeinsplife

tPP

tPPtPt
)1(1,1,

)0(1,1,)0(1, 11




 for tinsp,1 ≤ t(0)
life (7.1b)

where t(0)
life = initial lifetime, and t(1)

life = extended lifetime by repair. Similarly, the 

extended lifetime lifet  for the multi-inspection case can be formulated using the 

decision tree model.  

The probability of damage detection Pinsp in Equations (5.15) and (5.18) is used 

to formulate lifet . The probability of repair Prep is expressed as [Estes and Frangopol 

2001] 

pr

allow
rep

PT

PT
P 






  for PT < PTallow (7.2a)

repP 1.0 for PT ≥ PTallow (7.2b)

where PT = maximum pit depth defined in Equation (5.5), PTallow = allowable 

maximum pit depth, and rp = power parameter. The relation between the maximum 

pit depth PT and the probability of repair Prep in Equation (7.2) is illustrated in 

Figure 7.3. Depending on the value of rp, the repair is (a) proactive (rp < 1.0), (b) 

linear (rp = 1.0), and (c) delayed (rp > 1.0). The value of rp is associated with 

availability of funds and competing priorities among others [Estes and Frangopol 

2001]. For PT less than PTallow, the proactive approach has the highest probability of 

occurrence. If the pit depth PT is larger than the allowable depth PTallow, repair must 

be performed. The computational flowchart associated with the approach proposed 

in this chapter is presented in Figure A.6 (see Appendix). 
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7.4 Application to Existing Highway Bridges 

7.4.1 Description of the I-39 Northbound Bridge 

The proposed approach is applied to the I-39 Northbound Bridge over the Wisconsin 

River (Bridge-37-75) in Wisconsin, USA. This bridge was built in 1961. As shown 

in Figure 7.4, this bridge is a five span continuous steel plate girder bridge with 

slightly curved girders. The space between girders is 2.74m. The thickness of 

concrete deck is 190.5 mm (7.5 in), and the depth of cover is 50.8 mm (2 in). Details 

of this bridge are available in Mahmoud et al. (2005). This paper focuses on 

corrosion of the top transverse reinforcement bars of the deck between spans 1 and 2 

(see Figure 7.4), where the maximum negative moment can occur. 

 

7.4.2 Corrosion Initiation Time and Initial Lifetime 

Corrosion initiation time is calculated using Equation (5.3). Pitting corrosion model 

of Equation (5.5) is used to predict pit depth over time. The parameters associated 

with predictions of corrosion initiation time and pit depth are assumed to be random. 

The descriptors of the random variables (i.e., mean value and coefficient of variation 

(COV)) are summarized in Table 7.1. The coefficient representing the ratio between 

maximum and average corrosion penetrations Rpit in Equation (5.5) is assumed to be 

normally distributed with mean value of 6.0 [Val and Melchers 1997] and COV of 

0.1, considering that the range of Rpit can be from 4 to 8 [Gonzalez et al. 1995]. 
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Effect of Rpit on structural reliability was investigated by Stewart (2004). As 

indicated in Table 7.1, the assumed distribution type of other variables is log-normal.  

The time-dependent maximum pit depth PT defined in Equation (5.5) is 

obtained using Monte Carlo simulation with a sample size of 100,000 as shown in 

Figure 7.5. Figure 7.5(a) shows PDFs of the maximum pit depth PT at 10, 20, 30 and 

40 years. PDFs of corrosion initiation time and time when PT reaches 4, 8 and 12 

mm are presented in Figure 7.5(b). The mean and the standard deviation of PT 

increase over time due to increasing uncertainties. Figure 7.6 shows the PDFs of 

corrosion initiation time tcorr and initial lifetime t(0)
life. As shown in Figure 7.6(a), 

mean and standard deviation of tcorr are 8.59 years and 2.34 years, respectively. 

According to Torres-Acosta and Martinez-Madrid (2003), the lifetime of RC 

structures can be estimated using the ratio of uniform (i.e., average) corrosion 

penetration to radius of initial reinforcement bar. The allowable ratio from 0.035 to 

0.08 was suggested for lifetime estimation [Torres-Acosta and Martinez-Madrid 

2003]. In this study, the allowable ratio is assumed to be 0.05, and the associated 

maximum pit depth PT is computed as 4.43 mm using Equations (5.6) and (5.7). It 

means that when the maximum pit depth reaches PTallow of 4.43 mm, the equivalent 

uniform corrosion penetration is 5% of initial steel bar radius. Therefore, it is 

assumed that the lifetime t(0)
life of RC structure corresponds to the time when the 

maximum pit depth PT reaches 4.43 mm. As shown in Figure 7.6(b), the initial 

lifetime t(0)
life has the mean value of 21.52 years and the standard deviation of 4.06 
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years.  

 

7.4.3 Optimum Inspection / Repair Planning to Extend Lifetime 

After the damage is detected by an inspection method, a decision is made to repair or 

not according to the probability of repair. For given relation between probability of 

repair and degree of damage, the probability of damage detection can affect the type 

and timing of repair actions and, consequently the lifetime of the structure. The 

probability of damage detection is related to quality of inspection method, and 

damage intensity as indicated in Equation (5.15). In this study, the approach to 

establish the optimum inspection / repair planning is formulated considering 

probabilities of damage detection and repair.  

The inspection planning is formulated as an optimization problem by 

maximizing the mean of extended lifetime E(tlife). 

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,ninsp}   (7.3)

to maximize E(tlife) (7.4)

such that 1insp ,i insp ,i-1t t   year (7.5)

given ninsp, 0 5c , .  and rp (7.6)

where tinsp = vector of design variables (i.e., inspection times tinsp,1,…, tinsp,ninsp), 

tinsp,i= ith inspection time (years), ninsp = total number of inspections, and 0 5c , . = 

corrosion damage intensity at which the given inspection method has 50% 
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probability of damage detection. The time interval between inspections is assumed to 

be at least one year as indicated in Equation (7.5). The number of inspections ninsp, 

0 5c , .  representing the quality of inspection and power parameter rp defined in 

Equation (7.2) are fixed (see Equation (7.6)). Using decision tree model, the 

extended lifetime lifet  for ninsp = 1 is formulated as indicated in Equation (7.1). This 

formulation is extended to lifet  for ninsp ≥ 2. Considering uncertainties associated 

with corrosion initiation time and propagation, lifet  is treated as a random variable. 

The objective is to maximize the expected lifet  (see Equation (7.4)). In this chapter, 

partial-depth deck repair is applied. For this repair option, the top layer of 

reinforcement steel and concrete are replaced [NCHRP 2006]. It is assumed that the 

RC deck has original structural performance after repair. This problem is solved by 

the optimization toolbox provided in MATLAB version R2009a [MathWorks Inc. 

2009]. NSGA-II [Deb et al. 2002] was used to verify if the solution from the 

optimization toolbox of MATLAB is a global minimum.  

When an inspection with perfect detectability (i.e., Pinsp,1 = 1.0) is used, and 

probability of repair Prep,1 is equal to 1.0, the optimum inspection time is 16.59 years. 

The objective value (i.e., maximum E(tlife)) is 36.57 years. The associated PDF of the 

extended lifetime lifet  has two modes as shown in Figure 7.7. The left side mode 

results from the late inspection associated with branch 1 in Figure 7.2. The right side 

mode is associated with branch 4. There is no effect of branches 2 and 3 on the 

extended lifetime in Figure 7.7, since detection and repair are certain event. The 
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probability that the extended lifetime lifet  is less than 16.59 years is 0.093. This value 

is same as the probability that the initial lifetime t(0)
life in Figure 7.6(b) is less than 

16.59 years.  

 

Effect of repair approach on the expected extended lifetime 

As indicated previously, according to the value of the power parameter rp in 

Equation (7.2), the repair approach can be proactive (rp < 1.0), linear (rp = 1.0), or 

delayed (rp > 1.0). Figures 7.8(a) and 7.8(b) show the relation between 0 5c , .  

(representing the quality of inspection) and the expected extended lifetime E(tlife) for 

proactive and delayed approach, respectively, when the number of inspections ninsp = 

2. Each point in Figure 7.8 is the solution of the optimization problem defined in 

Equations (7.3) to (7.6). As 0 5c , .  increases (i.e., probability of damage detection 

decreases), the expected extended lifetime E( lifet ) is reduced (see Figure 7.8). 

Furthermore, E( lifet ) increases as rp decreases for given 0 5c , . . It should be noted that 

the decrease of rp leads to higher probability of repair. From these results, it can be 

seen that use of a higher inspection quality (i.e., lower values for 0 5c , . ) and/or repair 

with smaller rp results in an increase of E( lifet ). Figure 7.9 shows the two 

representative PDFs of the extended lifetime lifet  associated with proactive (i.e, rp 

=0.3) and delayed (i.e, rp =5.0) repair approaches, when the number of inspections 

ninsp = 2 and 0 5c , .  = 0.04. In the proactive case (rp = 0.3), the inspections should be 

performed at 17.66 and 35.33 years as shown in Figure 7.9. The associated mean of 
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lifet  is 45.65 years. When the delayed repair approach (rp =5.0) is used, the 

inspection has to be performed at 20.11 and 40.22 years. In this case, the associated 

mean of tlife is 28.15 years. 

 

Effect of number of inspections on the expected extended lifetime and total cost 

The expected total cost E( totalC ) associated with inspection / repair consists of total 

inspection cost CINS and expected repair cost E( REPC ) as 

E( totalC ) = CINS + E( REPC ) (7.7)

The total inspection cost CINS is defined in Equation (5.29). Based on a decision 

analysis tree, the expected repair cost E( REPC ) is estimated as the sum of the repair 

costs multiplied by the probability of the branch associated with repair. For a given 

number of inspections ninsp, the expected repair cost E( REPC ) considering the 

discount rate of money rdis is  

E( REPC ) = 
1 1 1

rep ,sb

insp ,r

nn
rep

b,st
s r dis

C
P

( r ) 


  

(7.8)

where Crep = cost of a single repair, Pb,s = probability of occurrence of the sth branch, 

nrep,s = number of repairs associated with this branch, and nb = total number of 

branches in the decision tree. tinsp,r is rth repair time, which is equal to the inspection 

time when damage is detected, and repair must be performed immediately. For 

example, when ninsp = 1 there are four branches (i.e., nb = 4) as shown in Figure 7.2. 

The number of repairs associated with the branches 1, 2 and 3 is nil, and there is no 
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repair cost. Only branch 4 has a repair action at time tinsp,1, and the associated 

probability is 1,1,4, repinspb PPP   (see Figure 7.2(a)). Therefore, the expected repair 

cost E(CREP) is     1

1 1 1 insp ,t

rep insp , rep , disC P P / r   . The constant αins in the 

inspection cost Cins of Equation (5.28) and the cost of a single repair Crep in Equation 

(7.8) are assumed 0.5 and 100, respectively. It should be noted that Cins is a relative 

cost when the repair cost Crep assumed to be 100.  

Figure 7.10 shows the effect of number of inspections ninsp on the expected 

extended lifetime E( lifet ) and the expected total cost E( totalC ), considering rp = 0.5, 0 

≤ 0 5c , .  ≤ 0.2 and rdis = 0. The inspection times, and expected extended lifetime and 

total cost associated with 0 5c , .  = 0.04, 0.08, 0.12 and 0.16 in Figure 7.10 are 

provided in Table 7.2. Figure 7.10 indicates that for given 0 5c , .  increasing ninsp 

results in the increase of both E( lifet ) and E( totalC ).  

 

7.4.4 Optimum Balance of the Expected Extended Life and Total Cost 

In order to extend the lifetime of a structure, an increase in the number of inspections 

and inspection quality are needed. However, this requires additional financial 

resources. Therefore, it is necessary to formulate a bi-objective optimization problem 

with two conflicting criteria: maximizing the expected extended lifetime E(tlife) and 

minimizing expected total cost E(Ctotal) as follows  

Find tinsp = {tinsp,1, tinsp,2, … , tinsp,i , … , tinsp,,ninsp}, and 0 5c , .  (7.9)
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to  maximize E(tlife) and minimize E(Ctotal)  (7.10)

such that 1insp ,i insp ,i-1t t   year (7.11a)

 0.02 ≤ 0 5c , .  ≤ 0.2 (7.11b)

given ninsp and rp (7.12)

The design variables of this problem are the inspection times and 0 5c , . . The 

formulation of E(tlife) in Equation (7.10) is identical with that of Equation (7.4). The 

expected total cost E(Ctotal) is provided in Equation (7.7). The constraints and known 

parameters are indicated in Equations (7.11) and (7.12), respectively. The Pareto 

optimal solution set of this bi-objective optimization problem is found using 

NSGA-II [Deb et al. 2002]. The maximum number of generations is fixed at 500 

with population of 100.  

The Pareto optimal solution set of the bi-objective optimization problem 

defined in Equation (7.9) to (7.12) is illustrated in Figure 7.11. Figures 7.11(a), 

7.11(b) and 7.11(c) show the Pareto solution sets associated with ninsp = 1, 2 and 3, 

respectively. A proactive approach with rp = 0.3 is used and the annual discount rate 

of money rdis is considered as 0.03. Table 7.3 provides values of design variables and 

objectives of six representative solutions in Figure 7.11. Solution N12 leads to the 

largest expected extended life E(tlife) and highest expected total cost E(Ctotal) among 

Pareto solutions in Figure 7.11(a). The optimum inspection time of solution N12 is 

17.56 years, and the associated E(tlife) and E(Ctotal) are 34.34 years and 43.64, 

respectively (see Table 7.3). In the Pareto solution set associated with ninsp = 3, 
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solution N32 requires the highest E(Ctotal), but its expected extended lifetime E(tlife) 

will be the largest as shown in Figure 7.11(c).  

 

7.5 Conclusions 

This chapter presents a probabilistic approach to establish optimum inspection / repair 

planning for deteriorating structures. The objective of the optimization is maximizing 

the expected extended lifetime. A decision tree model is used to formulate the 

extended lifetime considering probabilities of damage detection and repair. The 

probabilities of damage detection and repair are based on the degree of damage, and 

pitting corrosion is considered as the main factor affecting the deterioration of RC 

structures. The following conclusions can be drawn: 

1. The probabilistic methodology proposed considers uncertainties associated with 

corrosion initiation time and lifetime of deteriorating structures. Additionally, 

inspection uncertainty and type of preference behavior of the decision maker for 

repair (proactive or delayed) are considered. The effects of inspection quality, 

repair approach and/or number of inspections on the expected extended lifetime 

are revealed.  

2. Use of higher probabilities of damage detection and/or increasing number of 

inspections can lead to an increase of the expected lifetime. However, this 

increase requires additional financial resources. In order to establish a 

well-balanced cost-effective inspection / repair plan, a bi-objective optimization 
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formulation consisting of simultaneously maximizing the expected extended 

lifetime and minimizing the expected total cost has to be solved. 

3. The extended lifetime of deteriorating structures and the cost of lifetime 

extension can be affected by repair types and associated costs. The proposed 

approach considers a single repair option. However, multiple repair options can 

be implemented into this approach by considering improvement of structural 

performance after repair and repair cost.  

4. In order to implement the proposed approach, additional efforts are necessary for 

improving (a) probabilistic modeling of structural deterioration process, (b) 

accuracy of the prediction of lifetime of deteriorating structures, and (c) 

quantification of the relation between detectability and inspection methods 

including structural health monitoring. These improvements will reduce 

uncertainty and, in turn, will provide greater confidence in optimum inspection / 

repair strategies of deteriorating structures.  
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Table 7.1 Random variables for corrosion initiation and loss of reinforcement (Based 
on information provided in Gonzalez (1995), Val & Melchers (1997), Stewart (2004), 
Marsh & Frangopol (2008), and engineering judgement) 

Random variables Units Mean COV 
Type of 

distribution 

Depth from the concrete 
surface 

x (mm) 50.8 0.1 Lognormal 

Surface chloride 
concentration 

Cch,o (g/mm3) 0.15 0.1 Lognormal 

Effective chloride 
diffusion coefficient 

Dch (mm2/year) 110.0 0.1 Lognormal 

Threshold chloride 
concentration 

Cch,th (g/mm3) 0.035 0.1 Lognormal 

Initial diameter of 
reinforcement steel  

dst0 (mm) 19.05 0.02 Lognormal 

Rate of corrosion rcorr (mm/year) 0.06 0.2 Lognormal 

Coefficient representing 
ratio between maximum 
and average corrosion 
penetrations 

Rpit 6 0.1 Normal 
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Table 7.2 Optimum inspection times, expected extended lifetime and total cost for 
the proactive repair approach associated with rp = 0.5 

c,0..5 0.04 0.08 0.12 0.16 

tinsp,1 (years) 17.77 17.89 18.80 19.74 

E(tlife) (years) 33.27 32.88 31.62 29.05 
Number of 
inspections 

ninsp = 1 
E(Ctotal) 66.39 63.65 53.83 38.18 

tinsp,1 (years) 17.77 18.26 18.95 19.85 

tinsp,2 (years) 35.54 36.51 37.90 39.70 

E(tlife) (years) 43.12 42.55 40.33 35.39 

Number of 
inspections 

ninsp = 2 

E(Ctotal) 121.73 115.23 99.28 69.89 

tinsp,1 (years) 18.22 18.34 18.95 19.95 

tinsp,2 (years) 36.44 36.69 37.90 39.90 

tinsp,3 (years) 54.67 55.03 56.85 59.86 

E(tlife) (years) 51.44 50.81 47.96 40.97 

Number of 
inspections 

ninsp = 3 

E(Ctotal) 164.58 159.80 139.57 97.54 
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Table 7.3 Values of objectives and design variables for Pareto solutions in Figure 
7.11 

Objective function 
values 

Design variables 

Optimum inspection times 
(years) 

Pareto 
optimum 
solution E(tlife) 

(years) 
E(Ctotal) 0 5c , .  

tinsp,1 tinsp,2 tinsp,3 

N11 22.53 1.52 0.20 28.52 - - 

N12 34.34 43.64 0.02 17.56 - - 

N21 23.47 2.00 0.16 29.49 59.05 - 

N22 45.75 66.56 0.02 17.58 35.15 - 

N31 24.10 2.27 0.11 29.63 56.30 82.86 

N32 55.31 73.97 0.06 17.98 35.94 53.92 
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(a) 

DE   : Pinsp,1

DE     : 1 – Pinsp,1

RE     : Prep,1

RE     : 1 – Prep,1

+

–

+

–

First inspection time, tinsp,1

Branch 1

Branch 2

Branch 3

Branch 4

tinsp,1 ≤ t(0)
life

tinsp,1 > t(0)
life

DE     : Detection  +
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: Decision node  
: Chance node  

 
 
 
 
 

(b) 
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t(0)
life LIFETIMEt(1)

life

Late Inspection

Damage Detection  No Repair

t(0)
life: Initial lifetime without any repair
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life: Lifetime of a structure repaired after the first inspection

Damage Detection  Repair

No Damage Detection  No Repair

 
 
 
Figure 7.2 (a) Decision tree for prediction of lifetime with one inspection; and (b) 
extended lifetime of each branch in (a) 
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Figure 7.3 Relation between maximum pit depth and probability of repair 
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Figure 7.5 Time-dependent maximum pit depth PT of RC slab deck with (a) PDFs of 
PT at every 10 years; and (b) PDFs of corrosion initiation time and times when PT = 
4, 8 and 12 mm 
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Figure 7.6 PDFs of (a) corrosion initiation; and (b) initial lifetime 
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Figure 7.7 PDF of the extended lifetime associated with one inspection (i.e., ninsp = 1) 
assuming damage detection and repair as certain event (i.e., Pinsp,1  = Prep,1  = 1.0) 
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Figure 7.8 Relation between the corrosion damage intensity associated with 50% 
probability of damage detection and the expected extended lifetime based on (a)
proactive; and (b) delayed approaches to the probability of repair 
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Figure 7.9 PDFs of the extended lifetime based on proactive and delayed approaches 
to the probability of repair 
 

 

 

 

 

 

 



www.manaraa.com

 328

 

(a)

0

10

20

30

40

50

60

0 0.04 0.08 0.12 0.16 0.20

Proactive approach: rp = 0.5

ninsp = 2

ninsp = 1

ninsp = number of inspections 

ninsp = 3

E
X

P
E

C
T

E
D

 E
X

T
E

N
D

E
D

LI
F

E
T

IM
E

, E
(t

lif
e)

 (
ye

ar
s)

CORROSION DAMAGE INTENSITY ASSOCIATED 
WITH 50% PROBABILITY OF DETECTION, c,0.5  

 
 

(b)

0

40

80

120

160

200

0 0.04 0.08 0.12 0.16 0.20

E
X

P
E

C
T

E
D

 T
O

T
A

L 
C

O
S

T
, 

E
(C

to
ta

l) Proactive approach: rp = 0.5

ninsp = number of inspections 

ninsp = 3

ninsp = 2

ninsp = 1

CORROSION DAMAGE INTENSITY ASSOCIATED 
WITH 50% PROBABILITY OF DETECTION, c,0.5  

 
 
Figure 7.10 Effects of number of inspections on (a) expected extended lifetime; and 
(b) expected total cost 
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Figure 7.11 Pareto optimum solution sets for (a) number of inspections = 1; (b)
number of inspections = 2; and (c) number of inspections = 3 
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Figure 7.11 Pareto optimum solution set for (a) number of inspections = 1; (b)
number of inspections = 2; and (c) number of inspections = 3 (continued) 
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CHAPTER 8 

 

 SUMMARY, CONCLUSIONS AND FUTURE WORK  

 

8.1 Summary 

The main goal of this study was to develop probabilistic approaches for optimal 

inspection, monitoring and maintenance planning of deteriorating structures. These 

approaches were based on a single-objective or bi-objective optimization 

formulation. The objectives of these optimization formulations include maximizing 

the expected average availability of monitoring data and extended lifetime of a 

structure, and minimizing the expected damage detection delay and expected total 

cost. In order to formulate these objectives, probabilistic and statistical concepts and 

methods are used. The approaches proposed in this study were applied to existing 

highway bridges and naval ship structures under several deterioration mechanisms 

(i.e., corrosion and fatigue).  

Improvement of accuracy associated with assessment and prediction of 

structural performance through appropriate use of SHM data, results in the timely 

and appropriate maintenance interventions. These can lead to the reduction of the 

expected failure cost and the expected maintenance cost of deteriorating structural 

systems. Therefore, it is necessary to develop approaches to assess and predict the 

structural performance based on SHM data. Chapter 2 described the general concepts 

of reliability, service life of structures, and optimal management. Chapter 3 
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presented approaches to assess and predict the structural performance using SHM 

data. In Chapter 4, the optimization process for cost-effective monitoring planning 

was formulated as a bi-objective optimization problem associated with the 

availability of monitoring data for structural performance prediction and the 

cumulative cost. This formulation provides a monitoring plan with uniform time 

interval between monitorings for an individual structural component. Considering 

the reliability importance factors of structural components, the approach was 

extended to the optimal monitoring planning of structural systems. Chapter 5 

proposed a probabilistic approach to establish the optimum inspection and 

monitoring plan to minimize the expected damage detection delay. The formulation 

of the expected damage detection delay considers uncertainties associated with the 

damage occurrence and propagation, and quality of inspection method. This 

approach provides inspection and monitoring planning with non-uniform time 

intervals between inspections or monitorings. Chapter 6 extended the approach 

presented in Chapter 5, considering the relationship between time-based safety 

margin and damage detection delay. The approach in Chapter 6 is associated with a 

single objective optimization process based on the minimization of the expected total 

cost. Chapter 7 presented an approach for the optimum inspection / repair strategy 

under uncertainty to extend the lifetime of a structure cost-effectively. Decision 

makers’ willingness to make repair after damage detection as well as uncertainties 

associated with damage initiation and propagation, and quality of the inspection 
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method were considered in the optimization process. The approaches presented in 

this study were applied to deteriorating highway bridges and naval ship structures. 

The detailed summary of each chapter is as follows: 

• Chapter 2 reviewed the general concepts of the reliability and service life of civil 

structures, including (a) the system reliability approach and its applications, (b) the 

effects of time-dependent structural performance on the service life of a structure, 

and (c) the concepts of optimal management using multi-criteria optimization.  

• Chapter 3 presented (a) an approach to develop and update prediction functions, and 

(b) a procedure for the assessment and prediction of structural performance using 

monitoring. The updating of prediction functions is based on mean square fitting to 

monitored extreme data assigned to monitoring periods, while the necessary 

monitoring periods are computed from acceptance sampling theory. Furthermore, in 

order to assess and predict the structural system performance through 

series-parallel system modeling, an efficient approach using the long-term 

monitored strain data was proposed. Sensitivity studies with respect to system 

modeling, correlations, and measurement errors were carried out.  

• In Chapter 4, a probabilistic approach to establish an optimum monitoring plan 

based on availability was provided. The probability that the performance 

prediction model (introduced in Chapter 3) is usable in the future was computed by 

using the statistics of extremes. This probability represents the availability of the 

monitoring data over the future non-monitoring period. The optimum availability 
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of the monitoring data and monitoring cost was formulated as a bi-objective 

optimization problem with two conflicting objectives: minimization of the total 

monitoring cost and maximization of the availability of the monitoring data for 

performance prediction. The Pareto solution set from this problem provides the 

monitoring plan with uniform monitoring time intervals between monitoring 

activities for an individual structural component. Considering the normalized 

reliability importance factors of structural components, the approach to establish 

an optimal monitoring plan for a structural system was developed. In addition, as 

an alternative approach, decision analysis theory associated with the minimum 

monetary loss criterion was used.  

• Chapter 5 proposed a probabilistic approach for an optimum inspection and 

monitoring planning with non-uniform time intervals between inspections or 

monitorings. This approach considers uncertainties associated with damage 

occurrence and propagation, and quality of the inspection method, and monitoring 

duration. The optimization problem was formulated with the objective of 

minimizing the expected damage detection delay. The effects of the quality of 

inspection method, number of inspections or monitorings, monitoring duration, 

and dispersion associated with damage occurrence on the minimization of the 

expected damage detection delay were investigated. A well-balanced inspection or 

monitoring plan was obtained from a bi-objective optimization problem by 

simultaneously minimizing both the expected damage detection delay and the total 
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inspection and monitoring cost. A comparison of the inspection plans based on the 

same type and different types of inspections was conducted. Furthermore, an 

optimum combined inspection / monitoring planning was investigated taking into 

account the Pareto solution sets associated with various combinations of inspection 

and monitoring.  

• Chapter 6 extended the approach presented in Chapter 5 to cost-based optimum 

inspection and monitoring planning. This approach considers the relationship 

between time-based safety margin and damage detection delay, and the expected 

total cost including the costs of inspection and failure. The failure criterion is 

based on time-based safety margin defined as the difference between the time for 

damage to reach the critical fatigue crack size and the damage detection time. 

Uncertainty associated with time-based safety margin is included in the approach 

proposed in this chapter. Effects of the failure cost on inspection and monitoring 

scheduling were studied.  

• Chapter 7 presented a probabilistic approach for an optimum inspection and repair 

strategy to extend service life of a deteriorating structure. This strategy is a 

solution of a bi-objective probabilistic optimization problem considering the 

maximization of expected extended lifetime and minimization of expected total 

cost. The formulation of extended lifetime for a given number of inspections is 

based on a decision tree analysis. Probabilities of damage detection and repair are 

considered in this decision tree. The decision makers’ willingness to make a repair 
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after damage detection is categorized into: (a) delayed, (b) directly proportional 

and (c) proactive. The effects of inspection quality, repair approach, and number of 

inspections on the expected extended lifetime were investigated.  

 

8.2 Conclusions 

• The use of the proposed performance prediction function based on monitored 

extreme data provides the following benefits: (a) inclusion of environmental and 

degradation processes in the structural reliability assessment; and (b) flexible 

updating of performance functions associated with the reliability index or to any 

performance indicator by using acceptance criteria applied to monitoring extreme 

data.  

• The approach for optimum monitoring planning based on availability of monitoring 

data provides uniform time intervals between monitorings for an individual 

component. This optimum monitoring plan is affected by the discount rate of 

money. A higher discount rate of money leads to an optimal monitoring plan with 

shorter monitoring duration and shorter time interval between monitoring activities. 

As an illustrative example, the proposed approach was applied to an existing bridge. 

However, it can also be applied to other types of monitored structure. 

• The formulation of damage detection delay considers uncertainties associated with 

damage occurrence and propagation and quality of the inspection method. This 

approach provides optimum non-uniform time intervals between inspections or 
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monitoring activities. In the formulation of the expected damage detection delay, 

the determination of the lower and upper bounds for damage occurrence depends 

on the PDF of damage occurrence time. These bounds have a significant effect on 

the expected damage detection delay.  

• Increase in the number of inspections and/or inspection quality (or number of 

monitorings and/or monitoring duration) may lead to reduction of the expected 

damage detection delay. However, this increase requires additional financial 

resources. Therefore, in order to consider cost-effective inspection and/or 

monitoring plans, a bi-objective optimization problem based on minimization of 

both expected damage detection delay and inspection cost has to be solved.  

• For a predefined expected damage detection delay, an optimum inspection plan 

based on multiple inspection types is more economical than that based on a single 

type of inspection. Furthermore, damage may be detected with less delay by using 

monitoring than inspection. However, monitoring is usually more expensive than 

inspection. For this reason, combined inspection / monitoring plans were 

investigated.  

• Damage detection delay leads to repair delay, and, therefore, to an increase in the 

probability of failure. Under the assumption that repair and retrofit methods are 

applied immediately after damage is detected, the failure criterion can be 

formulated using damage detection time and time for damage to reach the critical 

state. This time-based failure criterion is used for the cost-based inspection or 
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monitoring planning.  

• The time-based failure criterion proposed in Chapter 6 is associated with the 

time-based safety margin. This safety margin considers uncertainty associated 

with the time for damage to reach a critical level. Alternatively, the time-based 

failure criterion can be associated with the crack size-based safety margin. The 

two approaches are expected to lead to identical results. 

• A probabilistic approach for optimum inspection / repair planning for extending the 

service life of a deteriorating structure was proposed. In this approach, proactive 

and delayed repair actions were considered. The relationships among inspection 

quality, number of inspections, repair approach and the expected extended lifetime 

were revealed. As expected, the use of higher probabilities of damage detection 

and/or the increase in the number of inspections can lead to an increase of the 

expected lifetime. However, this increase requires additional financial resources so 

that a bi-objective optimization formulation consisting of simultaneously 

maximizing the expected extended lifetime and minimizing the expected total cost 

has to be solved.  

 

8.3 Recommendation for Future Studies 

• The results after each inspection or monitoring can be used to update the existing 

inspection, monitoring and/or maintenance schedule. The updating process after 

each inspection or monitoring will lead to a more reliable maintenance schedule. 
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Therefore, further studies are necessary to establish the optimum inspection and 

monitoring planning considering updating.   

• The probabilistic approaches proposed in this study were applied to ship hull 

structures and bridge structures. These applications can be extended to include a 

wide range of structures under different deterioration processes. However, future 

efforts are needed to establish a methodology to consistently deal with lack of 

knowledge and data associated with deterioration mechanisms, inspection and 

monitoring methods, and time-dependent performance prediction. 

• The accuracy of the approach based on the newly developed component state 

function using monitored data depends on how correctly and completely the 

structural system is modeled. In addition, in order to achieve accurate system 

performance assessment, it is important to obtain the actual coefficients of 

correlation among the random variables directly from the monitored data. 

Therefore, the system should be modeled appropriately, and the correlation should 

be considered based on monitoring data.  

• Several assumptions in this study need to be further investigated. For example, the 

formulation of the expected damage detection delay for optimum monitoring 

planning is based on the assumption that the damage detection during monitoring is 

certain, when the sensors are installed properly. However, there are uncertainties 

associated with damage detection process. Further studies need to consider these 

uncertainties.  



www.manaraa.com

 340

• In order to model damage occurrence and propagation of deteriorating RC structures 

more accurately, concrete carbonation, time-dependent effects associated with 

chloride diffusion coefficient and the initial chloride concentration, and loss of 

bond between concrete and reinforcing bars have to be considered.  

• The fatigue damage occurrence and propagation are random processes involving 

intermittent growths and dormant periods. In order to consider these evolutionary 

features, Markov chains, jump process models and stochastic differential equations 

have been developed [Sobczyk 1987]. The scheduling of inspection and monitoring 

can be affected by the time evolution model of fatigue cracks. Therefore, further 

studies are needed to incorporate such advanced stochastic modelings into the 

approaches proposed in this study.  

• A single repair option was considered in the approach presented in Chapter 7. 

However, multiple repair options can be implemented into this approach by 

considering improvement of structural performance after repair and repair cost.  

• Further studies are necessary to develop the integrated approach to optimize 

monitoring location, type of monitoring, and monitoring duration for a life-cycle 

framework. 
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APPENDIX 

 

A.1 Notation 

a = crack size 

amar = crack-based safety margin during damage process  

Ast = cross-section area of reinforcement 

A  = average availability of monitoring data for structural performance 
prediction 

Cch(x, t) = chloride concentration at depth x from the surface at time t  

Cch,o = chloride concentration at the concrete surface 

Cch,th = threshold chloride concentration 

CCOM = total inspection and/or monitoring cost (i.e., CINS + CMON) 

Ce = measurement error factor 

Clevel = confidence level 

CET = expected total life-cycle cost 

CINI = initial cost including design and construction cost 

Cins = cost of a single inspection 

CINS = expected total cost of inspection 

CFAIL = expected cost of failure 

Cmain = maintenance cost 

Cmain,i = ith maintenance cost 

Cmon = cost of a single monitoring 

CMON = total monitoring cost 

CPM = expected cost of routine maintenance 

CREP = expected cost of repair 

dst0 = initial diameter of reinforcement 

Dch = effective chloride diffusion coefficient 

E(X) = expected value of random variable X 

fexm = monitored extreme data 

fp = prediction function 

fX(x) = probability density function of random variable X 

fX,Y(x,y) = joint probability density function of random variables X and Y 

FX(x) = cumulative distribution function of random variable X 

g(X) = state function 

M = safety margin 

ninsp = number of inspections 

nmain = number of maintenance actions 
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nmon = number of monitorings 

nop = order of the polynomial function 

Nan = annual number of cycles 

Ncycle = total number of cycles 

Nlt = total number of heavy trucks which crossed the bridge on the left lane 
during monitoring period 

Nrt = total number of heavy trucks which crossed the bridge on the right lane 
during monitoring period 

Nss = total number of heavy trucks which crossed bridge side-by-side during 
monitoring period 

Ntt  = total number of heavy trucks which crossed the bridge during monitoring 
period 

NRIFi = normalized reliability importance factor of component i 

pF = probability of failure 

pS = probability of survival 

Pexd = exceedance probability 

Pinsp = probability of damage detection 

Prep = probability of repair 

PS = Pareto solution set 

PT = maximum penetration of pitting 

qlimit,i = predefined upper limit of physical quantity of component i 

qmon,i = physical quantity obtained from monitoring system of component i 

rcycle = annual increase rate of number of cycles 

rdis = discount rate of money 

rmd = ratio of monitoring duration and prediction duration 

R = resistance 

Rpit = ratio of maximum pit depth to average pit depth 

RIFi = reliability importance factor of ith component 

S = load effect 

tdelay = damage detection delay 

tdet = time for damage to be detected 

te = upper bound of damage occurrence 

ti = ith time interval 

tinsp,i = ith inspection time 

tlife = service life of a structure 

tmar = time-based safety margin 

tmd,i = ith monitoring period 

tmon,i = ith monitoring starting time 

ts = lower bound of damage occurrence 
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Tcorr = corrosion initiation time 

Tmain,i = ith maintenance application time 

X’ = reduced random variable X 

Y(a) = geometry function 

rcorr = corrosion rate 

rdis = discount rate of money 

r(0)
det = deterioration rate without effect of maintenance 

rdet = deterioration rate with effect of maintenance 

β = reliability index 

βimp,i = improved reliability index due to ith maintenance  

βp = reliability profile  

βsystem,IN = system reliability index when all components are independent 

βsystem,PC = system reliability index when all components are perfectly correlated 

βtarget = target value of reliability index 

c = corrosion damage intensity 

c,0.5 = corrosion damage intensity at which the inspection method has a 50%
probability of damage detection 

f = fatigue damage intensity 

f,0.5 = fatigue damage intensity at which the inspection method has a 50%
probability of damage detection 

K = stress intensity factor 

λpar = location parameter 

ξpar  = shape parameter 

ρpar = scale parameter  

Ф = standard normal cumulative distribution function 

Ф-1 = inverse standard normal cumulative distribution function 

μX = mean value of X 

ρsys = system correlation matrix 

σlimit = predefined stress limit 

σmax = maximum stress 

σX = standard deviation of X 

σyield = yield strength 

ζ(t) = ratio of the expected largest value during future time period t to the largest 
value obtained during the monitored period 
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A.2 Detailed Flowchart of Computation Platform for Optimum Inspection, 

Monitoring and Maintenance Planning under Uncertainty  

 

This section presents detailed computational flowchart for optimum inspection, 

monitoring and maintenance planning.  

 

• Figure A.1 shows the detailed flowchart to assess and predict the structural system 

performance, and normalized reliability importance factors of individual 

components. 

• The detailed flowchart for optimum monitoring planning for a structural 

component is provided in Figure A.2. 

• The detailed flowchart for optimum monitoring planning for a structural system is 

provided in Figure A.3. The outputs from Figures A.1 and A.2 serves as input in 

Figure A.3, as shown in this figure. These three flowcharts are used to compute the 

results in Chapter 4. 

• Figure A.4(a) shows the detailed computational procedure for inspection and 

maintenance planning for minimizing the expected damage detection delay. The 

detailed optimization procedure is provided in Figure A.4(b). All the results of 

single and bi-objective optimization in Chapter 5 are obtained from computational 

procedure in Figure A.4.  

• Figure A.5 presents the detailed flowchart for inspection and maintenance 

planning for minimizing the expected total cost. This figure is associated with the 

results in Chapter 6.  

• Figure A.6 provides the detailed computational flowchart for the approach in 

Chapter 7. 
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functions of individual components

Determine the most appropriate PDF for monitoring data
• Collect monitored data
• Perform several relative goodnees of fit tests
• Determine the most appropriate PDF for the monitored data 
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• t_start = starting time
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• t_end = ending time

t ≤ t_end
No Yes

 

 

 

 

Figure A.1 Detailed flow chart for assessment and prediction of structural system 
performance and normalized reliability importance factors of individual components 
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Start

Decide the criterion for exceedance
probability according to allowable 

number of exceedances

Formulate the bi-objective optimization problem
• Design variables: monitoring and prediction durations
• Maximization of expected availability of monitoring data 
• Minimization of total monitoring cost

Determine the most appropriate PDF for the residuals
between  monitoring data and values from the prediction model 
• Collect monitored data
• Establish the prediction model
• Find residuals
• Perform several goodnees of fit tests
• Determine the most appropriate PDF for the residuals 

Formulate the followings:
• Exceedance probability 
• Expected availability of monitoring data

Solve the bi-objective optimization problem

Choose one monitoring plan from the Pareto solution 
set considering the followings:
• The importance and state of structural deterioration
• Available financial resources

Decided the followings:
• Reference monitoring cost during a predefined duration to 

estimate total monitoring cost 
• Constraints for the optimization process (e.g., limitation of 

monitoring and non-monitoring durations)
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Figure A.2 Detailed flow chart for optimum monitoring planning of individual 
components based on availability  
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Compute the expected normalized 
reliability importance factors of 
individual components during the 

predefined time period 

Decide the followings: 
• Total monitoring cost for a structural system during a 

predefined time period
• Target lifetime for monitoring
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Find the expected average availability
associated with the allocated monitoring 

cost from the Pareto solution set  

Find the monitoring plans for all the 
individual components in a structural 

system  

Loop in time
Do t = t_start: t_perod: t_target
• t_start = starting time
• t_period= predefined time period
• t_target = target lifetime

Loop in component
Do c = 1: 1: c_total
• c_total = total number of 

components in a structural system

t ≤ t_target

c ≤ c_total

No

Yes

Yes

Start

End
No

Figure A.1

Figure A.2

 

 

Figure A.3 Detailed flow chart for optimum monitoring planning of a structural system 
based on availability 
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Figure A.4 Detailed flow chart for optimum inspection and maintenance planning for 
minimizing the expected damage detection delay: (a) general process; and (b) 
optimization process in (a) 
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(b) 
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inspections and/or monitorings, Nmax

N = 1

Construct event tree to account for all of the 
inspection / monitoring decision cases

when number of inspections and/or monitorings
= N (i.e., 2N cases)

Bi-objective optimization problem for case n
• Define design variables
• Formulate two conflicting objectives: 

Minimizing both E (tdelay) and CCOM

• Define constraints
• Solve the bi-objective optimization problem

n = 1

Find and save Pareto solution set PSN,n

n = n +1

Based on Pareto solution sets PSN,n

find and save Pareto solution set PSN

N = N+1

Based on Pareto solution sets PSN

find Pareto optimal solution set PS

n ≤ 2N
Yes

No

N ≤ Nmax

No

Yes

 

Figure A.4 Detailed flow chart for optimum inspection and maintenance planning for 
minimizing the expected damage detection delay: (a) general process; and (b) 
optimization process in (a) (continued) 
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• Establish the damage prediction model
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Formulate the failure criterion considering the uncertainties 
associated with damage occurrence, propagation, and detection
• Define the time-based safety margin considering damage 
occurrence and propagation
• Formulate the expected damage detection delay and damage 
detection time
• Formulate the failure criterion

Formulate the expected total cost
• Estimate the inspection and monitoring  costs
• Estimate the failure cost of a deteriorating structure 

Formulate the optimization problem
• Objective: minimize the expected total cost
• Design variables: 
inspection time (or monitoring starting time)
• Constraints 
• Given conditions
- inspection planning: inspection quality and number of inspections
- monitoring planning: monitoring duration and number of monitorings
- failure cost and failure criterion

Solve the optimization problem

 
 

 

Figure A.5 Computational Procedure for optimum inspection and monitoring planning 
for minimizing the expected total cost 
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Start

Model Damage Prediction 
• Establish the damage prediction model
• Determine probabilistic parameters of the prediction model  
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Formulate the expected extended lifetime considering the 
uncertainties associated with repair, damage occurrence, 
propagation, and detection
• Predict the initial lifetime of a deteriorating structure
• Formulate the expected extended lifetime
considering probabilities of repair and damage detection

Formulate the optimization problem 
• Objective: maximize the expected extended lifetime
• Design variables: inspection time
• Constraints 
• Given conditions: inspection quality, number of 
inspections, and repair approach

Solve the optimization problem

 

 

 

 

Figure A.6 Procedure for optimum inspection and repair planning for maximizing the 
expected extended lifetime 
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